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Abstract

Recent explanations of aggregate stock market fluctuations suggest that countercyclical stock

market volatility is consistent with rational asset evaluations. In this paper, I develop a framework to

study the causes of countercyclical stock market volatility. I find that countercyclical risk premia do

not imply countercyclical return volatility. Instead, countercyclical stock volatility occurs if risk

premia increase more in bad times than they decrease in good times, thereby inducing price–dividend

ratios to fluctuate more in bad times than in good. The business cycle asymmetry in the investors’

attitude toward discounting future cash flows plays a novel and critical role in many rational

explanations of asset price fluctuations.
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1. Introduction

Why does stock market volatility vary over time? Economists have been intrigued by
this issue for decades. For example, Schwert (1989b) finds that the volatility of no single
macroeconomic variable could help explain low frequency movements of aggregate stock
market volatility. Yet stock market volatility is related to the business cycle. A number of
empirical studies confirm further findings from Schwert (1989a, b) that the volatility of
stock returns is higher in bad times than in good times (see, e.g., Brandt and Kang, 2004,
and the additional evidence provided here). This paper addresses an important but still
unanswered question: Why is stock market volatility asymmetric over the business cycle?

My central result is that, in economies with rational expectations, return volatility is
countercyclical because risk premia (i.e., the compensation investors require to invest in
the stock market) change asymmetrically in response to variations in economic conditions.
That risk premia are countercyclical has been a widely known empirical fact since the
seminal contributions of Fama and French (1989) and Ferson and Harvey (1991).
However, the main message of this paper is not a simple statement that risk premia must
be countercyclical to generate countercyclical return volatility. Instead, the crucial point is
that, to induce countercyclical return volatility, risk premia must increase more in bad
times than they decrease in good times, a new hypothesis that I support with substantial
empirical evidence.

So why do asymmetric risk premia fluctuations translate into countercyclical return
volatility? Consider Fig. 1, in which I assume that the investors’ risk-adjusted discount
rates are inversely and asymmetrically related to some variable y that tracks the state of the
economy. This asymmetry implies that in good times investors do not significantly alter the
discount rates used to evaluate future dividends. Consequently, price–dividend ratios do
not fluctuate widely in good times. In bad times, however, the investors’ discount rates are
extremely sensitive to changes in economic conditions. Therefore, variations in the
price–dividend ratios become increasingly volatile as economic conditions deteriorate. The
main result of this paper is that these asymmetric movements of the price–dividend ratios
occur when the asymmetry in discounting is sufficiently pronounced. I calculate a
theoretical lower bound for the asymmetric movements of the risk premia that triggers the
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Fig. 1. Countercyclical return volatility. If price–dividend ratios are concave in some state variable y tracking the

state of the economy, then return volatility increases on the downside and is consequently countercyclical.

According to the theory in this article, price–dividend ratios are concave in y if the risk-adjusted discount rates are

decreasing and sufficiently convex in y.
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previous asymmetric variations in the price–dividend ratios. This bound can be tight. For
example, economies exist in which risk premia are countercyclical but do not satisfy this
bound and, consequently, induce price–dividend ratios to fluctuate more in good times
than in bad.
Naturally, countercyclical return volatility could also arise because the volatility of the

state variables in the economy is inherently countercyclical. Alternatively, the conditions
developed here highlight the mechanism through which countercyclical return volatility is
endogenously induced by rational fluctuations of the price–dividend ratio. Moreover,
empirical evidence suggests that price–dividend ratios exhibit the pattern predicted in this
paper. I find that, over the last 50 years, price–dividend ratios movements in the US have
been asymmetric over the business cycle: Downward changes occurring in recessions have
been far more severe than upward changes during expansions.
In the economy I study, dividend growth is independent and identically distributed,

while interest rates and risk premia are driven by a state variable that is interpreted
as an index of the state of the economy. This economy is rich enough to include many
model examples in the literature. The distinctive feature of this article is the way I deal
with interest rates and risk premia. The standard approach is to link interest rates and
risk premia to markets, preferences, and technology (e.g., Basak and Cuoco, 1998;
Campbell and Cochrane, 1999; Jermann, 2005) or in general to make use of higher
level assumptions about the exact relations among interest rates, risk premia, and the
primitives of the economy (e.g., Brennan, Wang, and Xia, 2004; Lettau and Wachter,
2007).
In this paper, I take an opposite approach. Instead of making assumptions on interest

rates and risk premia, I look for pricing kernels that make return volatility countercyclical.
It is this search process that leads to the predictions summarized in Fig. 1. One additional
contribution of the paper is to use these new predictions to understand when, why, and
how models with time-varying discount rates could predict countercyclical volatility. For
example, in a seminal contribution Campbell and Cochrane (1999) find that models with
external habit formation might lead to countercyclical volatility. This paper explains the
rationale behind this important result. At the same time, the predictions developed here go
well beyond the case of habit formation.
Countercyclical stock volatility is an empirical observation related to the so-called

feedback effect; i.e., the effect by which asset returns and return volatility are negatively
correlated. Indeed, this paper shows that a pronounced asymmetric behavior of the risk
premia leads return volatility to be higher in bad times (when ex post returns are low) than
in good (when ex post returns are high). Moreover, the asymmetric behavior of the risk
premia could help explain why return volatility increases after prices fall. According to the
explanations summarized in Fig. 1, return volatility increases after a price drop, i.e., when
the price–dividend ratios enter the volatile region in Fig. 1.
Campbell and Hentschel (1992) develop the first partial equilibrium explanation for the

feedback effect. But, their explanation relies on a different channel. In the Campbell and
Hentschel economy, the negative correlation between return volatility and returns arises
through the combination of two inextricable effects: first, risk premia rise (and hence prices
fall) with the volatility of dividend news; second, return volatility increases with the
volatility of dividend news. Thus, in the Campbell and Hentschel economy the feedback
effect arises because there is fluctuating economic uncertainty (i.e., dividend volatility is
random) and investors fear this uncertainty.
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Wu (2001), Bansal and Yaron (2004), and Tauchen (2005) reconsider this channel of
fluctuating economic uncertainty. Bansal and Yaron as well as Tauchen show that, in
general equilibrium, investors with a preference for early resolution of uncertainty require
compensation for economic uncertainty, thereby inducing negative co-movements between
ex post returns and return volatility. This explanation of the feedback effect is not
inconsistent with my explanation based on an asymmetric behavior of the risk premia. In
fact, the last contribution of this paper is an extension of my previous analysis to
economies in which the fundamentals are surrounded by fluctuating uncertainty.

I consider two sources of volatility for the fundamentals of the economy. One is related
to uncertain consumption growth volatility while the other, suggested by Tauchen (2005),
relates to higher order uncertainty about consumption growth (the volatility of volatility).
I show when and how the risk premia for these sources of uncertainty make prices fall after
a rise in economic uncertainty. I provide a new role for the price–dividend ratio. For
example, the relation between prices and the volatility of volatility is not uniquely tied
down by the level of the volatility risk premia. It also depends on how asymmetrically the
price–dividend ratio reacts to changes in consumption growth volatility. Moreover, I show
that if investors have a preference for early resolution of uncertainty, an increase in the
economic uncertainty can lower the risk-free rate, thereby producing a positive relation
between asset prices and economic uncertainty. In particular, I show that the feedback
effect arises when the volatility of volatility is not too responsive to changes in volatility,
thereby dampening the effects associated with the preference for early resolution of
uncertainty. I use these novel insights to shed new light on previous models of fluctuating
economic uncertainty.

The main scope of this paper is to isolate the business cycle determinants of return
volatility. Its focus is on channels of asymmetric volatility that are markedly distinct from
the leverage effects (the effects by which an increase in the debt-to-equity ratio boosts
firms’ volatility). Instead, the general equilibrium analysis of leverage effects is in Aydemir,
Gallmeyer, and Hollifield (2005), who conclude that these effects have marginal
quantitative implications at the market level.

The paper is organized as follows. In Section 2, I develop the core analysis. Section 3
hinges upon this analysis and provides examples of economies with countercyclical stock
volatility. It also contains a calibration experiment to illustrate the key quantitative
implications of the paper. Section 4 develops extensions and identifies conditions under
which fluctuating economic uncertainty induces asset returns and volatility to co-move
negatively. Section 5 concludes. The appendix contains technical details and proofs.

2. The dynamics of volatility under general no-arbitrage restrictions

This section develops the main result of the paper. In Section 2.1, I describe the
economic environment. In Sections 2.2 and 2.3, I present and discuss general test
conditions under which the volatility of asset returns is countercyclical.

2.1. The economy

I consider a pure exchange, frictionless economy endowed with a single consumption
good. Let the process fDtgtX0 be the instantaneous rate of consumption. I assume that
consumption equals the dividends paid by a long-lived asset. Accordingly, the terms
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‘‘consumption’’ and ‘‘dividends’’ are used interchangeably. Let fytgtX0 be an additional
state variable. I assume that ðDt; ytÞ forms a diffusion process. A long-lived asset is an asset
that promises to pay fDtgtX0. Let fPtgtX0 be the corresponding asset price process. As is
well known, the absence of arbitrage opportunities implies that there exists a positive
pricing kernel fxtgtX0 such that

Ptxt ¼ Et

Z 1
t

xsDs ds

� �
; tX0, (1)

where Et½�� denotes the expectation operator conditional on the information available at
time t.1 Bubbles are not considered in this paper. Moreover, I assume that the total
consumption endowment Dt is generated by a geometric Brownian motion

dDt

Dt

¼ g0 dtþ s0 dW 1t, (2)

where W 1 is a standard Brownian motion and g0 and s0 are positive constants. Finally, the
state variable yt is a stationary process. It solves

dyt ¼ mðytÞdtþ v1ðytÞdW 1t þ v2ðytÞdW 2t, (3)

where W 2 is another independent standard Brownian motion, and m, v1, and v2 (vi40,
i ¼ 1; 2) are given functions that guarantee a strong solution to the previous equation. It is
well known (e.g., Duffie, 2001) that in this environment the pricing kernel xt in Eq. (1) is
the solution to

dxt

xt

¼ �Rt dt� l1t dW 1t � l2t dW 2t; x0 ¼ 1, (4)

for some processes Rt and lit. The economic interpretation of R and li is also standard. In
Eq. (4), R is the instantaneous interest rate and l ¼ ½l1l2�> is the vector of unit prices of
risk related to the sources of risk W 1 and W 2. I now formulate the main assumption in this
paper.

Assumption 1 (Scale-invariant economies). The instantaneous interest rate, R, and the unit
prices of risk, li, are functions of the state variable y only. That is, Rt ¼ RðytÞ and
lit ¼ liðytÞ, where the functions RðyÞ, l1ðyÞ, and l2ðyÞ are twice continuously differentiable.

Assumption 1 guarantees that the price–dividend ratio Pt=Dt is a function p of the state
variable yt only,

Pt

Dt

¼ pðytÞ, (5)

whence the scale-invariant terminology. In many existing models, yt is a variable related to
the general state of the economy, i.e., an expansion state variable summarizing the business
cycle conditions (see Section 3). This is also the interpretation of yt here. Accordingly, I
refer to the state variable yt as the state of the economy and to any variable positively
(negatively) correlated with yt as procyclical (countercyclical).
1The conditional expectation in Eq. (1) is taken with respect to the filtration generated by the Brownian motions

driving the dynamics of ðDt; ytÞ [see Eqs. (2) and (3) below], augmented by the null sets. Proposition 1 shows that,

under Assumption 1, the relevant conditioning information at time t is the state ðDt; ytÞ at time t.
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Which properties of the price–dividend ratio p are sought in this model? We want that
the price–dividend ratio p reacts asymmetrically to changes in yt. Precisely, we want that
the price–dividend ratio decreases more in bad times (when yt is low) than it increases in
good times (when yt is high). A key observation is that, to satisfy this property, the
price–dividend ratio must be increasing and concave in yt, as Fig. 1 suggests.

To formalize this intuition, let p0ðyÞ � ðd=dyÞpðyÞ and p00ðyÞ � ðd2=dy2ÞpðyÞ denote the
first and second order derivatives of the price–dividend ratio with respect to y, respectively,
and consider the pricing equation 0 ¼ xtDt dtþ Et½dðxtPtÞ�. Under regularity conditions,2

an application of Itô’s lemma to the definition of returns ðdPt þDtdtÞ=Pt yields

Returnst ¼ EðytÞdtþ Vol1ðytÞdW 1t þ Vol2ðytÞdW 2t, (6)

where

EðyÞ ¼ Expected returns ¼ RðyÞ þ bCFl1ðyÞ þ bP=DðyÞ � lðyÞ and ð7Þ

VolðyÞ ¼ ½Vol1ðyÞVol2ðyÞ� ¼ Return volatility ¼ ½bCF þ bP=D;1ðyÞ bP=D;2ðyÞ�, ð8Þ

and the two components of bP=D (i.e., bP=D;1 and bP=D;2) and bCF are given by

bP=D;iðyÞ ¼ viðyÞ
p0ðyÞ

pðyÞ
; i ¼ 1; 2 and ð9Þ

bCF ¼ s0. ð10Þ

For reasons developed below, it is also important to analyze the determinants of the
price–dividend ratio volatility. By another application of Itô’s lemma,

dpðytÞ ¼ Et½dpðytÞ� þ Vol
p
1ðytÞdW 1t þ Vol

p
2ðytÞdW 2t, (11)

where

VolpðyÞ ¼ ½Vol
p
1ðyÞ Vol

p
2ðyÞ� ¼ Price2dividend ratio volatility ¼ ½v1ðyÞ v2ðyÞ� � p

0ðyÞ.

(12)

As is clear, return volatility in Eq. (8) is affected by the two volatility components viðytÞ

of yt (which are exogenous) and by the term p0ðytÞ=pðytÞ (which is endogenous). The
endogenous term p0ðytÞ=pðytÞ is the price-induced component of return volatility. It is
decreasing in yt, and thus countercyclical, whenever the price–dividend ratio p is increasing
and concave in yt, i.e., p0ðytÞ40 and p00ðytÞp0. The intuition here is that asymmetric
fluctuations in the price–dividend ratio induce return volatility to increase on the
downside. However, because the price–dividend ratio is endogenous, not all possible
primitives in the economy lead to this asymmetry. We therefore need to figure out the right
primitives (m; v1, and v2), interest rates, and risk premia that do create the desired
asymmetric pattern.

Definition 1 summarizes the key features needed from the price–dividend ratio to induce
asymmetric movements in return volatility.
2The basic regularity conditions in this paper are that the price–dividend ratio p is twice differentiable and that

it and its derivatives admit the Feynman and Kac representation. See Mele (2003, 2005) for technical details and

references related to the feasibility of these conditions in both finite and infinite horizon settings.
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Definition 1 (Asymmetric return volatility). Return volatility is asymmetric if the two
volatility components of VolðyÞ ¼ ½Vol1ðyÞ Vol2ðyÞ� in Eq. (8) are countercyclical, i.e., if
VoliðyÞ is decreasing in y for i ¼ 1; 2. Moreover,
(a)
3T

intro

simp
The price-induced component of return volatility in Eq. (8) is asymmetric if the price-
elasticity EpðyÞ � p0ðyÞ=pðyÞ is countercyclical, i.e., if EpðyÞ is decreasing in y.
(b)
 The price-induced component of the price–dividend ratio volatility in Eq. (12) is
asymmetric if the price-sensitivity SpðyÞ � p0ðyÞ is countercyclical, i.e. if SpðyÞ is
decreasing in y.
Eq. (8) shows that return volatility is asymmetric if the price–dividend betas bP=D;iðytÞ ¼

ðp0ðytÞ=pðytÞÞviðytÞ are countercyclical. This property occurs if the volatilities of yt, viðytÞ,
and the price-elasticity EpðytÞ are both countercyclical. Because the volatilities viðytÞ are
exogenous, they play a relatively straightforward role in this paper. The more ambitious
purpose here is to focus on channels of asymmetric volatility arising through no-arbitrage,
countercyclical movements of the price-elasticity and the price-sensitivity.3

The condition that the price-sensitivity SpðytÞ be countercyclical is important for at least
two reasons. First, there is strong evidence in the US that the price–dividend ratios
decrease more in bad times (during recessions) than they increase in good times (during
expansions) (see Section 3.3). A satisfactory explanation of asymmetric volatility must be
consistent with this important empirical regularity. Second, the empirical evidence in this
paper suggests that variations in the level of the price–dividend ratios display counter-
cyclical volatility in the US. Both of these empirical regularities can be made consistent
with rational asset evaluation if the price-sensitivity SpðytÞ is countercyclical.

2.2. The cyclical properties of price– dividend ratios and return volatility

I now proceed to state the main result of the paper. To prepare the discussion of this
result, it is useful to introduce two fundamental concepts. First, define

m̄ðytÞ ¼ mðytÞ �
X2
i¼1

liðytÞviðytÞ þ s0v1ðytÞ. (13)

In short, m̄ðytÞ equals the risk-adjusted drift d
dtEtðytÞjt¼t ¼ mðytÞ �

P2
i¼1liðytÞviðytÞ, plus the

instantaneous covariance between dividend growth dDt
Dt

and changes in the state dyt, i.e.,

covtð
dDt
Dt
; dytÞ �

d
dtEt½ð

Dt�Dt
Dt
Þðyt � ytÞ�jt¼t ¼ s0v1ðytÞ. The conditional expectation Etð�Þ is

taken under the risk-neutral probability, defined through the risk-neutral evaluation
equation EtðdPtÞ þDt dt ¼ RtPt dt. Note that I am not assuming that the risk-neutral
probability is unique in the model. Instead, I am looking for pricing kernels (and, hence,
risk-neutral probabilities) that make return volatility asymmetric.
The second important definition relates to the expected returns in Eq. (7), which I

decompose as

EðyÞ ¼ DiscðyÞ þ bP=DðyÞ � lðyÞ, (14)
he price-elasticity EpðyÞ in Definition 1a parallels the notion of relative basis risk for a discount bond

duced by Cox, Ingersoll, and Ross (1979, p. 56). I refer to EpðyÞ as ‘‘elasticity,’’ not ‘‘semi-elasticity,’’ to

lify the exposition.
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where

DiscðyÞ ¼ RðyÞ þ bCFl1ðyÞ (15)

are the discount rates adjusted for cash flow risk (concisely, the risk-adjusted discount
rates) and bP=DðyÞ � lðyÞ is the additional compensation for the risk of fluctuations in the
price–dividend ratio. In this model, both l1ðyÞ and the cash flow beta bCF are exogenous.
Therefore, the discount rates DiscðyÞ are also exogenous. In contrast, the vector of
price–dividend betas bP=DðyÞ is endogenous as it depends on the properties of the
price–dividend ratio.

Proposition 1 isolates the key properties of the price–dividend ratio along with their
implications on the volatility components in Definition 1.

Proposition 1. Let the endowment process be as in Eq. (2), interest rates and unit-risk premia

be as in Assumption 1, and fytgtX0 be the solution to Eq. (3). Then, the price Pt is such that

Pt ¼ Dt � pðytÞ, where p is a positive function satisfying the following properties:
(a)
 Suppose that the risk-adjusted discount rates DiscðyÞ are countercyclical, i.e.,
d
dy
DiscðyÞo0. Then, the price– dividend ratio is procyclical, i.e., d

dy
pðyÞ40. Moreover,

suppose that

(a.1) d2

dy2
DiscðyÞ40 (Asymmetric discount rates), and

(a.2) AðyÞ � d2

dy2
m̄ðyÞ � 2 d

dy
DiscðyÞo0 (Asymmetric expectations). Then, the price– di-

vidend ratio reacts asymmetrically to variations in the state of the economy, i.e., it is

concave in y : d2

dy2
pðyÞo0. Consequently, (i) the price-induced components of

volatility in Definition 1 are asymmetric and (ii) the return volatility VolðyÞ in

Eq. (8) is countercyclical for all values of the state y on which the volatilities of the

state viðyÞ are not increasing.

(b)
 Suppose that y 2 ðy; ȳÞ for two constants y and ȳ, and assume that one of the two

following conditions holds true: (i) limy!y DiscðyÞ ¼ 1 (Large discounting) or (ii) the

risk-adjusted discount rates DiscðyÞ are bounded and decreasing in y for all y 2 ðy; ȳÞ, but

limy!y
d
dy
DiscðyÞ ¼ �1 (Large asymmetry in discounting). Then, under the technical

regularity conditions in the appendix (conditions H1), there exists a threshold level

of the state y�4 y such that the conclusions of the previous part hold true for all

y 2 ðy; y�Þ.
Conversely, suppose that the discount rates DiscðyÞ are countercyclical and that the

price-induced components of volatility in Definition 1 are asymmetric. Then, either Condition

a.1 or Condition a.2, or both, hold on some range of the state y having strictly positive

probability.

Proposition 1 identifies necessary and sufficient conditions leading to asymmetric
volatility through countercyclical movements of the price-elasticity EpðytÞ and the price-
sensitivity SpðytÞ. In Section 3.3, I produce a calibration experiment to assess the extent to
which these conditions are consistent with the empirical evidence on risk premia and the
price–dividend ratios in the US. I now develop the economic interpretation of the
conditions in Proposition 1.
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2.3. Discussion

Proposition 1 imposes joint restrictions on the price–dividend ratio, the law of motion
for the state variable yt (i.e., on m, v1, and v2), and the risk-adjusted discount rates DiscðytÞ

introduced in Eq. (15). The first restriction in Part (a) formalizes a well known concept. If
risk-adjusted discount rates are countercyclical, price–dividend ratios are procyclical. For
example, suppose that investors become more risk-averse during recessions. Then, in bad
times investors discount future cash flows more heavily, thereby driving price–dividend
ratios down.
Proposition 1a isolates the conditions under which the price–dividend ratio reacts

asymmetrically to changes in the state of the economy. It imposes two basic conditions.
The first condition, a.1, requires that the discount rates increase more in bad times than
they decrease in good times. The economic intuition underlying this condition has been
developed in the Introduction (see Fig. 1). While somewhat technical, the second
condition, a.2, is also economically important. Consider the evaluation formula in Eq. (1).
Under the risk-neutral probability,

P0

D
¼ E

Z 1
0

e
�
R t

0
RðyuÞ du Dt

D
dt

����y0 ¼ y

� �
¼ E

Z 1
0

e
�
R t

0
RðyuÞ du

� e
ðg0�

1
2
s2
0
Þt�
R t

0
s0l1ðyuÞ duþs0Ŵ1;t dt

����y0 ¼ y

� �
, ð16Þ

where the second equality follows by applying Itô’s lemma to Eq. (2), Ŵ 1 is a standard
Brownian motion under the risk-neutral probability Q (say), and the risk-adjustment termR t

0 s0l1ðyuÞdu arises as the conditional expectation E½�jy0 ¼ y� is taken under the risk-
neutral probability. By replacing the definition of DiscðyÞ � RðyÞ þ s0l1ðyÞ in Eq. (15) into
the previous equation, we can rewrite the price–dividend ratio P0

D
¼ pðyÞ as follows,

pðyÞ ¼ E

Z 1
0

D�t
D
� e
�
R t

0
DiscðyuÞ du

dt

����y0 ¼ y

� �
;

D�t
D
� eðg0�

1
2
s2
0
Þtþs0Ŵ1;t . (17)

Eq. (17) is a present value formula in which a fictitious risk-unadjusted dividend growth
D�t
D

is discounted using the risk-adjusted rates DiscðyÞ. According to Eq. (17), changes in prices
reflect the investors’ risk-adjusted expectation about the future state of the economy and,
hence, the discount rates to prevail in the future. In addition, the future state of the
economy is correlated with dividend growth. Therefore, changes in prices should also
factor in the covariance between dividend growth and changes in the state of the economy,
covtð

dDt
Dt
; dytÞ.

Condition a.2 in Proposition 1a formalizes the intuition that the price–dividend ratio in
Eq. (17) is affected by the risk-neutral expectation of the state and the covariance between
dividend growth and changes in the state. Recall the definition of AðyÞ in Condition a.2,

AðyÞ ¼
d2

dy2
m̄ðyÞ � 2

d

dy
DiscðyÞ. (18)

By definition, m̄ðytÞ is the sum of the risk-adjusted expectation of the instantaneous
changes in yt,

d
dtEtðytÞjt¼t and the covariance covtð

dDt
Dt
; dytÞ [see Eq. (13)]. Thus, m̄ðyÞ

summarizes the expectation about changes in the state of the economy and the co-
movements of the state with dividend growth. The function m̄ðyÞ can also be interpreted as
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Fig. 2. Expected changes in the state of the economy. In this picture, y is a state variable tracking the state of the

economy. The left-hand panel (Case a) depicts the drift function m̄ðytÞ ¼
d
dt ĒtðytÞjt¼t that makes the volatility of

the expected changes in y more volatile in bad times than in good times (solid line). The expectation Ē is taken

under the probability Q̄ in Eq. (19). The dashed line depicts one example of the expectation d
dtEtðytÞjt¼t taken

under the physical probability. The right-hand panel (Case b) depicts the drift function m̄ðytÞ that makes the

volatility of the expected changes in y as volatile in good as in bad times.
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follows. Rewrite the expectation in Eq. (17) as

pðyÞ ¼ Ē

Z 1
0

e
g0t�
R t

0
DiscðyuÞ du

dt

����y0 ¼ y

� �
, (19)

where Ē½�� is the conditional expectation taken under a new probability Q̄ defined by the

Radon-Nikodym derivative dQ̄=dQ ¼ expð�1
2
s20tþ s0Ŵ 1tÞ [see Eq. (51) in the appendix

for the derivation]. Eq. (19) is still a present value formula, in which a fictitious
deterministic dividend growth eg0t is discounted using the risk-adjusted rates DiscðyÞ, under

Q̄. Compared with the density of y under Q, the density of y under Q̄ is right-shifted to

reflect the positive covariance covtð
dDt
Dt
; dytÞ. Then, m̄ðyÞ is the drift of y under Q̄, and

Condition a.2 is satisfied if m̄ðyÞ is sufficiently concave, i.e. d2

dy2
m̄ðyÞo2 d

dy
DiscðyÞo0, where

the last inequality follows by the proposition’s assumption that the risk-adjusted discount
rates are countercyclical.

What does this concavity mean economically? Fig. 2 illustrates it. In Case a, the expected
changes in yt are more volatile in bad times; in Case b, the expected changes in yt are
volatile in both bad and good times. In both cases, the investors’ expectation about their
own future discount rates fluctuates more in bad times than in good times.4 These
4This statement is formally shown in the appendix (see Corollary 1). Intuitively, we have that, in Case a, the

volatile expectations of yt in bad times translate to volatile expectations of future discount rates. In contrast, in

Case b, the volatile expectations of yt in good times do not translate to volatile expectations of future discount

rates. This is because, in good times, investors expect declining rates of growth in the expansion state variable yt

(see Fig. 2, Case b). Hence, they do not expect their discount rates to fall significantly in the future.
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asymmetric expectation shifts amplify the asymmetric fluctuations of the current discount
rates induced by Condition a.1. Therefore, they accentuate the asymmetric behavior of the
price–dividend ratio, and contribute to countercyclical variation in the price-induced
components of volatility in Definition 1.
These expectation asymmetries take place under the probability Q̄ in Eq. (19). Thus,

they could arise for at least two reasons: (1) the expectation of the future state of the
economy under the physical probability is inherently asymmetric; and/or (2) investors are
risk-averse. To isolate the effects associated with risk-aversion, consider the extreme
situation in which the expectation of the future state of the economy is not asymmetric at
all, as in Case a of Fig. 2 (the dashed line). To make the same expectation asymmetric
under the probability Q̄ (the solid line in Fig. 2, Case a), investors should require a risk-
aversion correction that is more pronounced in bad times than in good. In other words,
Condition a.2 imposes that the risk-aversion correction be sufficiently asymmetric to
generate the drift distortion in Fig. 2. In turn, this distortion alters the strength of mean-
reversion of yt in bad times. It makes bad times more persistent than good times under the
risk-neutral probability, thereby implying a slow decay rate for the price of Arrow–Debreu
securities paying off in future bad states.
Finally, Part (b) of Proposition 1 deals with the extreme situation in which the dis-

count rates are large (or change quite asymmetrically) in bad times. Intuitively, this part
of the proposition follows from Eq. (17). If bad times worsen, the proposition’s condi-
tions imply that investors raise their discount rates to the extent that the price–dividend
ratio collapses to very low values. As a result, the price-elasticity EpðytÞ and sensitivity
SpðytÞ increase in bad times. Section 3 shows that such an extreme asymmetry in
discounting can occur in economies with external habit formation or restricted stock
market participation.

3. Examples

Proposition 1 provides general insights into the cyclical determinants of stock return
volatility. These same insights can be used to interpret the empirical success or failure of
previous existing models of aggregate stock market fluctuations. In Sections 3.1 and 3.2, I
use Proposition 1 to analyze and compare economies with external habit formation and
economies with restricted stock market participation. In Section 3.3, I produce a
calibration experiment to illustrate the quantitative content of the theory developed in this
paper.

3.1. External habit formation

Example 1 contains a well known model that can be analyzed with the tools introduced
in this paper.

Example 1 (Campbell and Cochrane, 1999). Consider an infinite horizon economy in

which a representative agent has discounted utility e�rtuðc;xÞ ¼ e�rt 1
1�Z½ðc� xÞ1�Z � 1�,

where r is the subjective discount rate, c is consumption, and x is the habit stock. Let
yt � ðct � xtÞ=ct be the surplus consumption ratio. By assumption, yt is the solution to

dyt ¼ yt½kðȳ� log ytÞ þ
1
2
s20lðytÞ

2
�dtþ s0ytlðytÞdW 1t, (20)
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where k40; ȳ 2 R, lðyÞ ¼ 1
Ȳ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðȳ� log yÞ

p
� 1, y 2 ð0; Ȳ � e1=2ð1�Ȳ

2
ÞÞ, and Ȳ ¼ expðȳÞ ¼

s0
ffiffiffiffiffiffiffiffi
Z=k

p
. In equilibrium, ct ¼ Dt for all t, the interest rate R is constant, and the unit risk

premia are l2ðyÞ ¼ 0 and l1ðyÞ ¼ Zs0½1þ lðyÞ�.

Campbell and Cochrane identify the habit formation mechanics that lead to pricing
kernel properties in line with empirical facts. The message of their model, however, is far
more general. For example, Guvenen (2005) shows that models with restricted stock
market participation have a reduced form, which is similar to the habit formation model of
Campbell and Cochrane. (See, also, the similarities in Section 3.2 below.)

In the Campbell and Cochrane economy, return volatility is such that Vol2ðytÞ ¼ 0 and
VolðytÞ � Vol1ðytÞ, where, by Eq. (8),

VolðytÞ ¼ s0½1þ EpðytÞytlðytÞ�, (21)

and EpðytÞ is the price-elasticity introduced in Definition 1. Campbell and Cochrane
demonstrate numerically that, in a discrete time version of Example 1, the return volatility
in Eq. (21) is decreasing in the surplus consumption ratio, yt. There are two reasons for this
result.

First, in the empirically relevant range of variation, the volatility of the fundamentals,
s0ytlðytÞ, is decreasing in yt. Second, the price–dividend ratio collapses to zero as the
surplus consumption ratio goes to zero. The second effect arises through the channel
identified by Proposition 1b. In the Campbell and Cochrane economy, the discount rates
DiscðytÞ react asymmetrically to changes in yt. In particular, they become large and
infinitely convex as the surplus ratio gets smaller (two properties labeled ‘‘large
discounting’’ and ‘‘large asymmetry in discounting’’ in Proposition 1b). Therefore, even
if the volatility of fundamentals s0ytlðytÞ approaches zero as the surplus ratio approaches
zero, the extremely high discounting in bad times makes the price–dividend ratio very
small, thereby inducing the price-sensitivity SpðytÞ and the price-elasticity EpðytÞ to blow
up.5 As a result, the return volatility, VolðytÞ, is such that VolðytÞ4s0 for small values
of yt.

6

Do habit models always predict that price–dividend ratios change asymmetrically in
response to variations of the surplus consumption ratio? Consider Example 2.

Example 2. Assume that, in the habit formation economy of Example 1, the representative

agent has instantaneous utility uðct; xtÞ ¼
1

1�Z½ðct � xtÞ
1�Z
� 1� but that the surplus

consumption ratio yt � ðct � xtÞ=ct is such that Gt � y
�g
t is the solution to

dGt ¼ kðḠ � GtÞdt� aðGt � lÞs0 dW 1t, (22)

for some positive constants k, Ḡ, a, and l.
5As the surplus ratio yt approaches zero, the surplus volatility s0ytlðytÞ also approaches zero. This condition

guarantees that yt remains positive, a requirement consistent with the preferences specification underlying the

habit formation mechanics.
6Wachter (2005) uses new numerical methods and shows in detail the concavity property that emerges by

Proposition 1b. It is also possible to show that, with the parameter values used by Campbell and Cochrane,

Condition a.2 in Proposition 1a is not satisfied, although the same condition is satisfied with different parameter

values.
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Table 1

The price–dividend ratio and surplus consumption for the economy in Example 2

This table summarizes qualitative properties of the continuous-time economy in Example 2. In this economy, a

representative agent has habit formation preferences, with instantaneous utility uðc; xÞ ¼ ðc� xÞZ, where Z is the

local curvature of the instantaneous utility, c is consumption, x is the habit stock, and Gt � y
�g
t is solution to

dGt ¼ kðḠ � GtÞdt� aðGt � lÞs0 dW 1t,

where W 1t is a Brownian motion, yt �
ct�xt

ct
is the surplus consumption ratio, s0 is consumption growth volatility,

and g; k; Ḡ, and a are additional preference parameters related to the habit formation process. The properties in

this table hold for g ¼ 1. They are obtained by applying the test conditions in Proposition 1a. The first column

displays parameter restrictions. The second column lists qualitative features of the price–dividend ratio

corresponding to the restrictions in the first column. The third column reports when the price-induced component

of both return volatility and the price–dividend ratio volatility is asymmetric.

Parameter restriction Price–dividend ratio Price-induced asymmetric volatility

Z 2 ð0; 1Þ and kḠ4als20ðaþ Z� 1Þ Increasing and concave in y Yes

Z ¼ 1 Increasing and linear in y No

Z41 and Increasing and convex in y No

kḠ4als20 maxfaþ Z� 1; ð1þ aÞðZ� 1Þg
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Example 2 generalizes two models in the literature: one, developed by Menzly, Santos,
and Veronesi (MSV, 2004), in which the authors set g ¼ Z ¼ 1 (see also Buraschi and
Jiltsov, 2006); the other, proposed by Santos and Veronesi (2006), in which g ¼ Z. These
parameter restrictions lead to closed-form solutions for the price–dividend ratio. For
example, in the MSV economy, the price–dividend ratio for the aggregate consumption
claim is linear in y. A natural question is: What happens in this economy if the preference
parameters are such that g ¼ 1 (as in MSV), but the local utility curvature Z is different
from one? The answer can be obtained by applying the test conditions in Proposition 1a. It
is summarized in Table 1.
The economic intuition behind the restrictions in Table 1 stems from the asymmetric

behavior of the risk-adjusted discount rates DiscðytÞ ¼ RðytÞ þ s0l1ðytÞ. In this economy,
the interest rate RðyÞ and the unit risk premia are such that l2ðyÞ ¼ 0, and

l1ðyÞ ¼ Zs0½1þ ð1� lyÞa�; and (23)

RðyÞ ¼ rþ Zg0 �
1
2
s20ZðZþ 1Þ þ Zkð1� ḠyÞ � Z2s20að1� lyÞ � 1

2
Zð1� lyÞ2a2s20ðZ� 1Þ.

(24)

While the risk premium l1ðyÞ is always decreasing and linear in the surplus consumption yt,
the asymmetric behavior of the discount rates DiscðyÞ is affected by the local utility
curvature Z.
If Z ¼ 1, the discount rates DiscðyÞ are decreasing and linear in y, i.e., they react

symmetrically to changes in yt. As a result, the price–dividend ratio is also increasing and
linear in yt. This property implies that the price-sensitivity SpðytÞ ¼ p0ðytÞ is constant and

that the price-elasticity EpðytÞ ¼
p0ðytÞ

pðytÞ
is countercyclical, with the countercyclical effect

arising through the denominator. In other words, the price-sensitivity SpðytÞ is not

countercyclical and so the price-induced component of the price–dividend ratio volatility is
symmetric.
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When is the price-sensitivity countercyclical? Proposition 1 identifies a precise condition:
Either the discount rates or the risk-adjusted expectation about the future state of the
economy, or both, must behave asymmetrically over some range of yt. In this economy, the
discount rates DiscðyÞ have the desired property if Z 2 0; 1ð Þ. This result follows because of
the last term in the expression for the interest rate R in Eq. (24). This term reflects
precautionary motives that become less important as the utility curvature parameter Z
decreases. Precisely, if Z is less than one, the interest rate is decreasing and convex in the
surplus ratio, i.e., it fluctuates more in bad times than in good. According to the expla-
nations given in the Introduction (see Fig. 1), this asymmetry translates to countercyclical
variation in the price-sensitivity, under the additional condition in Table 1 reflecting
Condition a.2 in Proposition 1a. This is the prediction in the first row of Table 1.

The last row in Table 1 can be interpreted similarly: If the utility curvature parameter Z
is greater than one, the interest rate is decreasing and concave in y. This precautionary-
induced asymmetry now makes the interest rate fluctuate more in good times than in bad,
thereby leading to a procyclical variation in the price-sensitivity. Therefore, this model
might or might not generate countercyclical variation in the price-sensitivity. According to
Proposition 1a, this property crucially depends on the magnitude of the utility curvature Z.

3.2. Restricted stock market participation

Countercyclical stock volatility could also arise in economies without habit formation.
Consider the Basak and Cuoco (1998) model of restricted stock market participation. In
this model, there are two agents. The first agent invests in the stock market and has an
instantaneous utility function with constant relative risk-aversion equal to Z. The second
agent is prevented from investing in the stock market and has logarithmic preferences over
consumption. The two agents have the same subjective discount rate r.

The marginal rate of substitution of the stock market participant is tied down to the
pricing-kernel in Eq. (4) by the following relation:

cp;t

cp;0

� ��Z
¼ ertxt, (25)

where cp;t is his optimal consumption. The marginal utility of the agent not participating in

the stock market is ð
cn;t
cn;0
Þ
�1
¼ erte

�
R t

0
Rs ds

, where cn;t is his optimal consumption. By

expanding the left- and right-hand sides of Eq. (25), by identifying terms, and by using the
market clearing condition cp;t ¼ Dt � cn;t, one finds that l2ðyÞ ¼ 0 and

l1ðytÞ ¼ Z � Vol
dcp;t

cp;t

� �
¼ Z � s0

1

yt

, (26)

where yt �
cp;t

Dt
is the market participant’s consumption share and Volð

dcp;t

cp;t
Þ ¼ s0 1

yt
is the

instantaneous standard deviation of the market participant’s consumption growth in
equilibrium.

Intuitively, in this economy the stock market participant (i.e., the marginal investor) is
bearing the entire macroeconomic risk. The risk premium he requires to invest in the stock
market is large when his consumption share yt is small. Moreover, the risk-adjusted
discount rates DiscðytÞ ¼ RðytÞ þ s0l1ðytÞ could display a similar property. By Basak and
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Cuoco (1998, Corollary 1, p. 323),

RðytÞ ¼ rþ
Zg0

Z� ðZ� 1Þyt

�
1

2
ZðZþ 1Þs20

1

Zyt � ðZ� 1Þy2
t

. (27)

A simple computation reveals that, if Z41, the discount rates DiscðyÞ are convex in y and
limy!0DiscðyÞ ¼ 1, as in the Campbell and Cochrane habit formation economy of
Example 1. In this economy with restricted stock market participation, the investor’s
evaluation of future cash flows is quite asymmetric. According to Proposition 1b, this
asymmetry makes the price–dividend ratio fluctuate more on the downside, thereby
producing asymmetric return volatility. Thus, both the Campbell and Cochrane (1999)
economy and the Basak and Cuoco (1998) economy have an interesting property that helps
illustrate the point of this paper: Countercyclical return volatility is induced by a
pronounced asymmetry in the investors’ attitude to discounting future cash flows.
3.3. Quantitative implications

I perform a calibration experiment to illustrate the quantitative implications of the
theory. Table 2 displays the empirical benchmark for the calibration, based on a sample of
660 monthly observations from January 1948 through December 2002. The table reports
the average and standard deviation for the price–dividend ratio on the Standard & Poor’s
(S&P) Composite index (P/D henceforth), the monthly changes P=Dtþ1 � P=Dt, the

percentage changes of the P/D, defined as logð
P=Dtþ1
P=Dt
Þ, the continuously compounded (real)

returns, the riskless interest rate (the real one-month Treasury bill rate), and the excess
return volatility.7 I compute the excess return volatility as of month t through the Officer

(1973) moving standard deviation estimator, ŝt ¼
1
12

P12
i¼1 jExctþ1�ij, where Exct are the

excess returns at month t. Then, I convert this volatility measure into dVolt � ffiffip
2

p ffiffiffiffiffi
12
p

ŝt.

The
ffiffiffiffiffi
12
p

factor is used to annualize ŝt; the
ffiffip
2

p
factor was suggested by Schwert (1989b,

p. 1118) to correct a bias related to estimating the standard deviation through the absolute
value of the excess returns.
Table 2 also reports descriptive statistics for the previous variables during National

Bureau of Economic Research (NBER)- dated expansions and recessions. Return volatility
is clearly countercyclical, as is the volatility of the P/D changes. For example, the excess
return volatility is 0.14 on average (annualized). It increases by 22% during recessions and
decreases by 4% during expansions. The P/D is procyclical but moves asymmetrically over
the business cycle. According to the statistics in Table 2, the P/D is 32 on average, increases
by 4% during expansions, and decreases by 18% during recessions. The volatility of the P/
D changes is also asymmetric. It is 4.48 on average, increases by 26% during recessions,
and decreases by 7% during expansions. Finally, the absolute value of the average of both
the P/D changes and the P/D percentage changes is nearly twice as severe during recessions
than expansions.
7The data on the P=D ratio are obtained from Robert Shiller’s website. The remaining data are from the Center

for Research in Security Prices database, with the exception of the seasonally adjusted Industrial Production,

obtained from the FREDs database. Real returns and interest rates are obtained by deflating their nominal

counterparts with the consumer price index.
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Table 2

Business cycle properties of the price–dividend (P/D) ratio and returns

P/D is the Standard & Poor’s (S&P) Composite price–dividend ratio. Real returns ~Rt are the log-returns on the

S&P deflated by the consumer price index. Twelve month returns as of month t are defined as
P12

i¼1
~Rt�i . Excess

returns are returns in excess of the real (one month) risk-free rate and are computed similarly. Volatility is the

excess return volatility, computed asdVolt � ffiffip
2

p P12
i¼1
jExctþ1�i jffiffiffiffi

12
p , where Exct is the return in excess of the one-month

bill return as of month t. Data are sampled monthly and cover the period from January 1948 through December

2002. All figures are annualized percent, with the exception of the P/D ratio levels and the changes

P=Dtþ1 � P=Dt, which are only annualized. NBER: National Bureau of Economic Research.

Variables Total NBER expansions NBER recessions

Average Standard Average Standard Average Standard

deviation deviation deviation

P/D 31.99 15.88 33.21 15.79 26.20 14.89

P=Dtþ1 � P=Dt 0.66 4.48 1.33 4.17 �2.54 5.64

log
PDtþ1
P=Dt

2.01 12.13 3.95 10.81 �7.28 16.79

Real returns 8.22 14.94 9.70 13.82 1.17 19.28

Twelve month returns 8.59 15.86 12.41 13.04 �9.45 15.49

Real risk-free rate 1.02 2.48 1.03 2.43 0.97 2.69

Excess return volatility 14.18 4.86 13.50 4.49 17.38 5.18
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The main point of this paper is that these properties can be explained by the asymmetric
behavior of the risk premia over the business cycle. To provide empirical evidence in
support of this theoretical finding, I use the Fama and French (1989) measurement
procedure for estimating expected returns. I regress S&P returns (deflated by the consumer
price index) on to the default-premium (Baa yield minus ten-year government bond yield),
the term-premium (ten-year government bond yield minus three-month Treasury bill

yield), and the return volatility dVolt. The estimate of the expected returns at time t, Êt say,
is the fitted value at time t of this regression. Finally, I define one-year moving averages of

the industrial production growth as IPt �
1
12

P12
i¼1 Indtþ1�i, where Indt is the real,

seasonally adjusted industrial production growth as of month t.
The left-hand side of Fig. 3 plots the estimated expected returns Êt against the industrial

production growth IPt. The right-hand side displays the fitted values of the least absolute
deviations regression,

Êt ¼ 8:56
ð0:15Þ
� 4:05
ð0:30Þ
�IPt þ 1:18

ð0:31Þ
�IP2

t þ wt, (28)

where wt is a residual term and robust standard errors are in parenthesis.8 The evidence
from Fig. 3 is striking. In good times, expected returns (a reasonable proxy for risk premia)
do not vary much. In bad times, however, their fluctuations are more pronounced.
3.3.1. The benchmark economy

I now illustrate how the theory of this paper helps explain these large swings in the
expected returns and return volatility. I use the habit formation economy in Example 2 to
8I run a least absolute deviations regression because this methodology is known to be more robust to the

presence of outliers than ordinary least squares (see, e.g., Bloomfield and Steiger, 1983).
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Expected returns and industrial production
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Fig. 3. Expected returns and business cycle conditions. The left-hand side of this picture plots estimates of the

expected returns (annualized, percent) (Êt say) against one-year moving averages of the industrial production

growth (IPt). The expected returns are estimated through the predictive regression of Standard & Poor’s returns

on to default-premium, term-premium, and return volatility defined as dVolt � ffiffip
2

p P12
i¼1
jExctþ1�i jffiffiffiffi

12
p , where Exct is the

return in excess of the one-month bill return as of month t. The one-year moving average of the industrial

production growth is computed as IPt �
1
12

P12
i¼1 Indtþ1�i, where Indt is the real, seasonally adjusted industrial

production growth as of month t. The right-hand side of this picture depicts the prediction of the static least

absolute deviations regression: Êt ¼ 8:56
ð0:15Þ
� 4:05
ð0:30Þ
�IPt þ 1:18

ð0:31Þ
�IP2

t þ wt, where wt is a residual term, and standard

errors are in parenthesis. Data are sampled monthly and span the period from January 1948 to December 2002.
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implement a calibration experiment. I specialize this economy to the case analyzed by
Santos and Veronesi (2006), in which g ¼ Z. In this economy, the interest rate RðyÞ and the
prices of risk are such that l2ðyÞ ¼ 0, and

RðyÞ ¼ rþ Zg0 �
1
2
s20ZðZþ 1Þ þ kð1� ḠyZÞ � Zas20ð1� lyZÞ; and

l1ðyÞ ¼ s0½Zþ að1� lyZ
Þ�. ð29Þ

If Zo1, the risk-adjusted discount rates DiscðyÞ ¼ RðyÞ þ s0l1ðyÞ increase more in bad
times than they decrease in good times, i.e., they are decreasing and convex in the surplus
ratio y.9 Moreover, the sensitivity of the discount rates to changes in yt can get arbitrarily
large in bad times. Formally, if Zo1, then limy!0

d
dy
DiscðyÞ ¼ 1, a property labeled ‘‘large

asymmetry in discounting’’ in Proposition 1b.
According to Proposition 1, the previous properties translate to countercyclical

movements in the price-elasticity and the price-sensitivity. This is confirmed analytically.
9Intuitively, l1 is always decreasing and convex. Moreover, low values of the utility curvature Z make R

fluctuate more in bad times than in good, because of (weak) intertemporal substitution effects (the fourth term in

the expression for R). At the same time, low values of Z mitigate the precautionary effects (the last term in the

expression for R).
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The solution for the price–dividend ratio is

pðyÞ ¼ b1 þ b2y
Z, (30)

where b1 and b2 are two positive constants. That is, provided Zo1, the price–dividend ratio
is concave in y and so the price-elasticity and the price-sensitivity are both countercyclical.

3.3.2. Calibration

I simulate the model discussed in Section 3.3.1 with one hundred samples of 50 years. I
choose the model’s parameters so as to match its key unconditional population moments to
the empirical counterparts in Table 2. These moments are the mean of the S&P Composite
price–dividend ratio, the standard deviation of the price–dividend ratio changes and log-
changes, and, finally, the mean and standard deviation of the continuously compounded
returns and the risk-free rate. Table 3 reports the parameter values along with the calibration
results. To generate countercyclical variation in the price-sensitivity, the utility curvature
parameter Z must be less than one, as discussed in Section 3.3.1. I use Z ¼ 1

2
. With the

exception of this parameter, all parameter values are comparable with those in Santos and
Veronesi (2006). The results in Table 3 show that the model generates figures for the average
risky returns, the return volatility, and the mean and standard deviation of the risk-free rate,
which are all very close to their empirical counterparts. Moreover, it successfully explains the
level of the price–dividend ratio, along with the volatility of its changes.

Next, I look at the conditional moments implications of the model. I proceed as follows.
First, I compute the certainty equivalent for the price–dividend ratio, defined as
ŷ : pðŷÞ ¼ E½pðytÞ�, where E½�� denotes the unconditional expectation operator. I define
the ‘‘average states’’ of the economy as the states for which the surplus consumption ratio
yt 2 ½y�; yþ�, where y� ¼ ŷ� 1

2
StdðyÞ and StdðyÞ is the unconditional standard deviation of

yt. I find that ŷ ¼ 1:97% and StdðyÞ ¼ 0:59%. Next, I define the ‘‘good states’’ as those in
which yt 2 ½yþ; yþ þ D�, where D ¼ 0:50%. Finally, I define three levels of bad states. The
less severe bad states occur when yt 2 y� � D; y�

� 	
(bad states B1); the intermediate bad

states occur when yt 2 ½y� � 2D; y� � D� (bad states B2); the most severe bad states occur
when yt 2 ½y� � 3D; y� � 2D� (bad states B3).

Table 4 displays the key conditional population moments of the model. The oscillations
of the price–dividend ratio from good states to bad are asymmetric and mimic the swings
in the data. The model predicts that, as the price–dividend ratio moves away from the
average states, it increases by 8% in the good states and decreases by 13% in the bad states
B1. In particular, the price-sensitivity SpðytÞ increases by 18% in the bad states B1 and
decreases by 8% in the good states. This asymmetry becomes more pronounced in the
more severe states B2 and B3. Eventually, the price-sensitivity blows up as the surplus
consumption ratio gets small. Intuitively, in this economy the representative agent modifies
his discount rates dramatically as bad times deteriorate (the large asymmetry in
discounting property discussed in Section 3.3.1), thereby inducing the price-sensitivity to
change dramatically as well [Eq. (62) in the appendix formalizes this intuition].

The asymmetric behavior of the price-elasticity EpðytÞ is even more pronounced. This
property accounts for the large movements in the expected returns shown in Table 4. This
is because a large price-elasticity translates to a high price–dividend beta and so to large
expected returns in Eq. (7). Finally, the model generates countercyclical return volatility,
along with countercyclical variation in the volatility of the price–dividend ratio changes.
The results in Table 4 reveal that the asymmetric movements in the price-sensitivity are
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Table 3

Parameter values and basic calibration results for the model in Example 2

This table reports the basic calibration results for the infinite horizon, continuous-time economy in Example 2. Panel A has annualized parameter values used to

match the basic moments of data reported in Panel B. The parameters g0 and s0 are the instantaneous average and standard deviation of consumption growth,

respectively. The remaining parameters affect the preferences of a representative agent with habit formation: r is the subjective discount rate, and Z is the local

curvature of the instantaneous utility uðc;xÞ ¼ ðc� xÞZ, where c is consumption, x is the habit stock, and Gt � y
�g
t is solution to

dGt ¼ kðḠ �GtÞdt� aðGt � lÞs0 dW 1t,

where W 1t is a Brownian motion and yt �
ct�xt

ct
is the surplus consumption ratio. In this calibration experiment, g is set equal to Z. Panel B has calibration results for

the average Standard & Poor’s (S&P) Composite price–dividend ratio, P/D; the standard deviation of the P/D changes, StdðP=Dtþ1 � P=DtÞ; the standard deviation

of the log-P/D changes, Stdðlog
P=Dtþ1
P=Dt
Þ; the average real log-returns on the S&P (deflated by the consumer price index), Eð ~RÞ; the standard deviation of returns,

Stdð ~RÞ; the average real (one-month) risk-free rate Eðrf Þ; and the standard deviation of the risk-free rate, Stdðrf Þ. All figures in Panel B are annualized percent, with

the exception of the P/D ratio levels, and the changes P=Dtþ1 � P=Dt, which are only annualized.

Panel A. Consumption and preference parameters

g0 s0 Z r Ḡ k l a

0.020 0.015 1
2

0.045 8.36 0.16 6.01 73.85

Panel B. Moments of historical data and moments implied by the model

Sample data EðP=DÞ StdðP=Dtþ1 � P=DtÞ Stdðlog
P=Dtþ1
P=D t
Þ Eð ~RÞ Stdð ~RÞ Eðrf Þ Stdðrf Þ

Historical data 31.99 4.48 12.13 8.22 14.94 1.02 2.48

Model 32.27 3.75 13.45 7.27 14.95 2.08 3.51
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Table 4

Conditional moments implied by the calibrated model in Example 2

Consumption and preference parameters are fixed at the values in Table 3, Panel A. The P/D sensitivity is the

sensitivity of the price–dividend (P/D) ratio to changes in the surplus consumption ratio y and is computed as

p0ðyÞ, where p is the P/D ratio. The P/D elasticity is the elasticity of the P/D ratio to changes in y, computed as p0 ðyÞ
pðyÞ

.

The P/D volatility is the volatility of the instantaneous changes in the P/D ratio, computed as p0ðyÞvðyÞ, where vðyÞ

is the instantaneous volatility of y. The log-P/D volatility is the volatility of the instantaneous changes in the log-

P/D, computed as p0 ðyÞ
pðyÞ

vðyÞ. Surplus volatility is the instantaneous volatility of the surplus ratio, vðyÞ. The risk-

adjusted rates are the discount rates adjusted for cash flow risk. The table reports expectations conditional on the

surplus ratio y belonging to pre-specified states. For each variable, its expectation in the average states is the

expectation conditional on y belonging to the interval ½y�; yþ�, where y� ¼ ŷ� 1
2
StdðyÞ; StdðyÞ is the standard

deviation of y (with StdðyÞ ¼ 0:59 � 10�2); and ŷ is the certainty equivalent for the P/D ratio, defined as ŷ :

pðŷÞ ¼ E½pðytÞ� (with ŷ ¼ 1:97 � 10�2). For each variable, the expectation in the good states is the expectation

conditional on y belonging to ½yþ; yþ þ D�, where D ¼ 0:50 � 10�2. Finally, the expectation in the bad states B1,

B2, and B3 is the expectation conditional on y belonging to ½y� � nD; y� � ðn� 1ÞD�, for n ¼ 1 (the bad states B1),

n ¼ 2 (the bad states B2), and n ¼ 3 (the bad states B3), respectively. The figures for the log-P/D volatility, return

volatility, risk-adjusted rates, and expected returns are annualized percent.

Variables Good states Average states Bad states

B1 B2 B3

P/D 35.52 32.62 28.29 23.81 17.58

P/D sensitivity 618.18 675.56 796.52 976.03 1450.21

P/D elasticity 17.33 20.46 27.72 40.15 81.52

P/D volatility 1.72 4.02 6.89 8.48 8.57

log-P/D volatility 4.86 12.27 24.02 34.96 47.06

Surplus volatility 2:81� 10�3 5:97� 10�3 8:66� 10�3 8:68� 10�3 5:87� 10�3

Return volatility 6.36 13.79 25.52 36.52 48.80

Risk-adjusted rates 0.53 2.61 5.68 8.87 13.31

Expected returns 1.36 6.81 16.76 31.73 49.61
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quantitatively responsible for the bulk of variation in the volatility of the price–dividend
ratio changes. To summarize, in this economy the discount rates react asymmetrically to
changes in economic conditions. Furthermore, this asymmetry becomes more pronounced
as bad times worsen. Importantly, the calibration exercise reveals that the theoretical issues
this paper associates with such asymmetries can have substantial quantitative implications
on the dynamics of expected returns and volatility.

4. Economies with fluctuating uncertainty

How do the restrictions in this paper work in a world with fluctuating economic uncertainty? I
now analyze economies in which consumption growth is surrounded by varying uncertainty.

4.1. The dynamics of fundamentals and asset prices

I consider an economy in which expected consumption growth and consumption
volatility are both time-varying,

dDt

Dt

¼ xt dtþ sDðstÞdW 1t, (31)
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where Dt is the consumption endowment, xt is the expected consumption growth, and st is a
state variable affecting consumption volatility sDðstÞ, for some positive function sD increasing
in st. Both expected consumption growth and consumption volatility are predictable:

dxt ¼ gðx̄� xtÞdtþ sx dW 2t,

dst ¼ kðs̄� stÞdtþ ssðst; qtÞdW 3t,

dqt ¼ bðq̄� qtÞÞdtþ sqðqtÞdW 4t, ð32Þ

for some additional Brownian motions W 2, W 3, and W 4; some positive constants g, x̄, sx, k, s̄,
b, and q̄; and some functions ss and sq, which are assumed to be increasing in their arguments.
These assumptions about consumption volatility are the continuous-time counterpart to

Tauchen (2005). Tauchen’s assumptions about volatility extend upon those in Bansal and
Yaron (2004) because the function ssðst; qtÞ could depend on st and some additional
volatility of volatility state variable qt. In turn, the previous model is a slight generalization
of Tauchen’s as it includes variation in the expected consumption growth xt. However, the
expected growth xt does not play any role in the analysis below.
As in Section 2, I assume that the interest rate and risk premia are independent of the

level of aggregate consumption Dt. Therefore, the pricing kernel xt is the solution to

dxt

xt

¼ �RðytÞdt� kðytÞdWt, (33)

where yt ¼ ½xt; st; qt�
>, W ¼ ½W 1; . . . ;W 4�

>, and, finally, k ¼ ½lD; lx; ls; lq� is the vector of
unit prices of risk. These assumptions imply that the price–dividend ratio Pt

Dt
¼ pðytÞ, for

some function p. I assume that R and k are twice continuously differentiable and that the
price–dividend ratio p satisfies the same regularity conditions as in Section 2. To keep the
presentation simple, I also assume that every unit price of risk li depends only on the
variables that affect the volatility of the state variable i (i ¼ D;x; s; q), i.e., lD � lDðsÞ,
lx � lxðxÞ, ls � lsðs; qÞ and lq � lqðqÞ.

10

Which conditions should the pricing kernel satisfy to make returns inversely related to
the volatility of fundamentals st and the volatility of volatility qt? By the definition of asset
returns,

Returnst ¼
dPt þDt dt

Pt

¼ EðytÞdtþ VolðytÞdWt, (34)

where Vol ¼ ½Vol1; . . . ;Vol4�, Vol1 ¼ sD, Voli ¼
pi
p
si (i ¼ x; s; q), subscripts on the

price–dividend ratio p denote partial derivatives (for example, ps �
qpðx;s;qÞ

qs
), and, finally,

the expected returns in Eq. (34) are obtained similarly as in Eq. (7) in Section 2. They are

EðytÞ ¼ RðytÞ þ sDðstÞlDðstÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�DiscðytÞ

þ
X

i¼x;s;q

VoliðytÞliðytÞ. (35)

By Eqs. (32) and (34),

EtðReturnst � d‘tÞ ¼
piðytÞ

pðytÞ
siðytÞ

2 dt; ‘t ¼ st or qt. (36)
10The interest rate and the risk premia in Eq. (33) do not depend on some additional index tracking the state of

the economy [such as that in Eq. (3)]. Adding this would lead to the same analysis as in Section 2, without

affecting the results in this section.
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Thus, ex post returns co-move negatively with the volatility factors st and qt if the
price–dividend ratio p decreases with st and qt, i.e., pso0 and pqo0. Proposition 2
develops conditions under which such inverse relations do occur.

Proposition 2. Let the endowment process be as in Eq. (31) and suppose that the risk-adjusted

discount rates in Eq. (35) are increasing in the volatility of fundamentals s, i.e., q
qs
DiscðyÞ40.

The following statements hold true under the assumptions in this section
(a)
 The price– dividend ratio reacts negatively to changes in the volatility of fundamentals s,
i.e., psðyÞo0. Hence, the asset returns in Eq. (34) and st are negatively correlated.
(b)
 Assume that the volatility risk premia are negative and increasing in q, i.e., lsðs; qÞo0 and

�
q½lsðs;qÞssðs;qÞ�

qq
40, and that one of the two following conditions holds true:

(b.1) The discount rates are increasing in the volatility of volatility q, i.e. q
qq
DiscðyÞ40.

In addition, (i) the volatility of fundamentals s 2 ðs; s̄Þ, for two positive constants s

and s̄, and (ii) the price– dividend ratio reacts asymmetrically to changes in s, i.e., it

is concave in s.
(b.2) �qDisc p� qðlsssÞ ps þ

1 qs2s psso0 (Large negative volatility risk premia).
qq qq 2 qq
Then, the price– dividend ratio is decreasing in the volatility of volatility q, i.e., pqðyÞo0.
Hence, the asset returns in Eq. (34) and qt are negatively correlated.
Conversely, suppose that the price– dividend ratio is decreasing in the volatility of

fundamentals s (respectively, the volatility of volatility q). Then, the discount rates DiscðyÞ
must be increasing in s (respectively, Condition b.2 must hold) on some sets of y having

strictly positive probability.

As in Sections 2 and 3, the discount rates DiscðytÞ in Eq. (35) play a critical role.
Consider Part (a) of Proposition 2. It relies on the assumption that, after a positive shock
to the volatility of fundamentals st, investors raise the discount rates they use to evaluate
future dividends. Under this condition, an increase in the volatility of fundamentals lowers
the price–dividend ratio and induces a negative relation between asset returns and the
volatility of fundamentals.

Part (b) of Proposition 2 relates asset returns to higher order properties of the economic
fundamentals. When is the price–dividend ratio inversely related to the volatility of
volatility qt? First, volatility risk should be negatively priced, i.e., lso0. Intuitively, if
prices are negatively affected by volatility, a negative volatility risk premium is required to
make Arrow–Debreu state prices high in the poor states of the world (i.e., when volatility is
high). Second, the volatility risk premia should increase with the volatility of volatility q,

i.e., q
qq
ð�lsssÞ40. In other words, following a positive shock to qt, the compensation for

volatility fluctuations should increase, thus lowering the asset price and returns. These two
basic conditions are not sufficient to make the price–dividend ratio decreasing in qt.
Proposition 2 identifies two additional sets of conditions.
1.
 Condition b.1 is a sufficient condition. It requires that the discount rates DiscðytÞ be
increasing in qt and that the price–dividend ratio be decreasing and concave in the
volatility of fundamentals st. Intuitively, the concavity property means that the
price–dividend ratio dampens low realizations of st and exaggerates higher realizations
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of st. As a result, a positive spread in the uncertainty surrounding the volatility st (i.e.,
an increase in the volatility of the volatility qt) lowers the price–dividend ratio, a
conclusion consistent with second-order stochastic dominance. In turn, the proof of
Proposition 2 reveals that the following conditions guarantee that the price–dividend
ratio is concave in s:

q2

qs2
DiscðyÞ40 ðAsymmetric discount ratesÞ (37)

and

�
q2

qs2
½lsðs; qÞssðs; qÞ�42

q
qs

DiscðyÞ ðAsymmetric volatility risk premiumÞ. (38)

These conditions require that the discount rates DiscðytÞ and the volatility risk premia
�lsðst; qtÞssðst; qtÞ increase more in bad times (when the volatility st is high) than they
decrease in good times (when the volatility st is low). Similarly as in Sections 2 and 3,
this kind of asymmetry implies that the price–dividend ratio p fluctuates more in bad
times than in good, i.e., it is decreasing and concave with respect to s.
2.
 Condition b.2 holds under Condition b.1, but the converse is clearly not true.
Moreover, the last part of Proposition 2 states that the necessary condition for the
price–dividend ratio to be decreasing in q is that Condition b.2 holds on some sets of y
having positive probability. In particular, Condition b.2 is satisfied if the volatility risk
premia are sufficiently responsive to changes in qt (i.e., if the sensitivity �qðlsssÞ

qq
is

sufficiently large). Section 4.2 provides examples of economies in which volatility risk
premia behave in the manner prescribed by Condition b.2.

Finally, the feedback effect discussed in the Introduction arises if the return volatility
components in Eq. (34) increase after a positive shock in st and in qt. In all the economies I
consider in Section 4.2, this property arises under the same conditions stated in
Proposition 2.

4.2. An application to nonexpected utility

I use Proposition 2 to analyze the economies considered by Bansal and Yaron (2004)
and Tauchen (2005). In these two papers, the primitives satisfy a discrete-time version of
Eqs. (31) and (32), and a representative investor is endowed with the Epstein and Zin
(1989) and Weil (1989) nonexpected, but recursive utility. Consumption growth satisfies

logDtþDt � logDt ¼ xt �
1

2
sDðstÞ

2

� �
Dtþ sDðstÞ�1;tþDt

ffiffiffiffiffi
Dt
p

, (39)

where Dt40, �1;t is independent and identically distributed as a standard normal variable,
and expected consumption growth xt, consumption volatility st, and the volatility of
volatility qt are the discrete-time counterparts to Eqs. (32) [see Eqs. (69) in the appendix].

4.2.1. The risk-free rate and the risk premia

The asset price Pt satisfies the Euler equation xtPt ¼ Et½xtþDðPtþDt þDt � DtÞ�, where the
pricing kernel xt is defined recursively as xtþDt �MtþDtxt (with x0 ¼ 1) and Mt is the
stochastic discount factor. In the Epstein and Zin and Weil environment, the stochastic
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discount factor satisfies

log xtþDt� log xt ¼ logMtþDt¼ �yrDt�
y
c
log

DtþDt

Dt

� �
þ ðy� 1Þ log

PtþDt þDtDt

Pt

� �
,

(40)

where y � 1�Z

1�
1
c
, r is the subjective discount rate, Z is the relative risk-aversion for static

gambles, and c is the intertemporal elasticity of substitution (IES, henceforth). In the

standard expected utility framework, Z ¼ c�1.
In the appendix, I show that in the continuous-time limit, the pricing kernel in Eq. (40)

satisfies Eq. (33), where the interest rate is

RðytÞ ¼ rþ
1

c
xt �

1

2
Z 1þ

1

c

� �
sDðstÞ

2
�

1

2
ð1� yÞ

X
i¼x;s;q

siðytÞ
piðytÞ

pðytÞ

� �2

, (41)

and the vector of unit-risk premia l ¼ lD; lx; ls; lq

� 	
, with lD ¼ ZsD and li ¼ ð1� yÞsi

pi
p

(i ¼ x; s; q). Therefore, in this economy, the discount rates in Eq. (35) are

DiscðytÞ ¼ rþ
1

c
xt þ

1

2
Z 1�

1

c

� �
sDðstÞ

2
�

1

2
ð1� yÞ

X
i¼x;s;q

siðytÞ
piðytÞ

pðytÞ

� �2

. (42)

These expressions for the interest rate and the risk premia appear to be new to the
literature. I now use them to check the test conditions in Proposition 2.

4.2.2. Ex post returns and return volatility

I relate ex post returns and return volatility to changes in the volatility of fundamentals
st and in the volatility of volatility qt.

When are prices inversely related to the volatility of fundamentals st? According to
Proposition 2a, this property arises if the discount rates DiscðytÞ are increasing in st.

Consider, for example, the expected utility case in which Z ¼ 1
c and, hence, y ¼ 1. Eq. (42)

reveals that, if precautionary motives are not too strong (i.e., if the IES c41), the investor
raises his discount rates after a positive shock to the volatility st, thereby inducing an
inverse relation between st and ex post returns. Moreover, by continuity, the same inverse

relation obtains for a fixed IES c41 and some values of Z higher than 1
c.
11

To further analyze the case yo1, we need to understand how the last term in the right-
hand side of Eq. (42) changes with st. Consider a log-linear expansion of the
price–dividend ratio such that si

pi
p
	 siAi, for three positive constants Ai, i ¼ s; q;x. By

substituting this approximation into Eq. (42),

DiscðytÞ ¼ rþ
1

c
xt þ

1

2
Z 1�

1

c

� �
sDðstÞ

2
�

1

2
ð1� yÞ

X
i¼x;s;q

A2
i siðytÞ

2. (43)

The difference 1� y ¼ ð1� 1
cÞ
�1
ðZ� 1

cÞ plays a crucial role in Eq. (43). Let the IES c41
(the case co1 can be analyzed in a similar way). If the risk-aversion parameter Z41, the
last term on the right-hand side of Eq. (43) decreases with the volatility st.
11The result that pso0 for y ¼ 1 differs from those in Bansal and Yaron and in Tauchen. The difference arises

because to make Eq. (39) consistent with its continuous time counterpart in Eq. (31), I corrected expected

consumption growth for Jensen’s inequality effects through the additional term 1
2
sDðstÞ

2.
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What is the economic intuition for this result? From the work of Kreps and Porteus
(1978) and Epstein and Zin (1989), we know that if Z41

c, then the investor has a preference
for early resolution of uncertainty. This preference induces him to accelerate his
consumption plan in response to increased uncertainty. In general equilibrium, this fall
in his (planned) expected consumption growth is possible with a fall in the interest rate in
Eq. (41) and hence in the discount rates in Eqs. (42) and (43). Therefore, to make discount

rates increasing in the volatility s (as required by Proposition 2), the term
P

i¼x;s;q A2
i siðytÞ

2

in Eq. (43) should be relatively insensitive to changes in s. Equivalently, the discount rates

in Eq. (43) are increasing in st when the volatility risk premium ls ¼ ð1� yÞss
ps
p
	

Asð1� yÞss is not too responsive to changes in s.
These properties arise if the volatility of volatility function ssðs; qÞ is independent of s, as

in Bansal and Yaron (2004) and in the two-factor setting in Tauchen (2005, Section 3).
They also arise in the one-factor model of Tauchen (2005, Section 2), in which sDðsÞ �

ffiffi
s
p

and ssðs; qÞ � fs

ffiffi
s
p

, provided the positive constant fs is not too large.12 Under these
conditions, variation in s also leads to the volatility feedback. This is because by Eq. (34),
the return volatility component related to s is approximately ð

ps
p
ssÞ

2
	 A2

ss
2
s and is

increasing in s.
How do prices react to changes in the volatility of the volatility qt? By Eq. (43), the

preference for early resolution of uncertainty implies that the discount rates are increasing
in qt. Therefore, Condition b.1 in Proposition 2b does not hold. Instead, the
price–dividend ratio is decreasing in qt if Condition b.2 holds. In turn, Condition b.2 is

satisfied if the sensitivity of the volatility risk premia with respect to changes in qt, �
qðlsssÞ

qq
,

is large enough to dwarf the previous uncertainty resolution effects.
Volatility risk premia can have this property in the Tauchen two-factor model, in which

ssðs; qÞ ¼
ffiffiffi
q
p

, sqðqÞ ¼ fq

ffiffiffi
q
p

and lsðs; qÞ 	 Asð1� yÞ
ffiffiffi
q
p

. In this model, the sensitivity
qðlsssÞ

qq
	 1

2
ð1� yÞAs and should be large compared with the uncertainty parameter fq.

13

Proposition 2b predicts that, in this case, ex post returns decrease after a positive shock to
the volatility of the volatility qt. Moreover, changes in qt raise return volatility as the

volatility component related to q is approximately ð
pq

p
sqÞ

2
	 A2

qs
2
q and is increasing in q.

Hence, Proposition 2b predicts that, in this economy, the feedback effect can be induced by
variation in the volatility of volatility. By the previous discussion, this effect arises when
the reaction of the volatility risk premium to changes in qt is large enough to mitigate the
effects of a preference for early resolution of uncertainty.
5. Conclusion

Why is stock market volatility higher in bad times than in good times? One possible
explanation is that the economy is frequently hit by shocks with the same properties as
those ultimately observed in the asset prices. Another possibility is that stock market
12It is easily seen that in the Tauchen’s one-factor model, q
qs
Disc40 if and only if 1

2
Zð1� 1

cÞ �
1
2
ð1� yÞA2

sf
2
s40,

i.e., if and only if fs is not too large and limfs!0A2
sf

2
s ¼ 0.

13By replacing the expressions for ss, sq, and ls and the log-linear approximation pi 	 Aip into Condition b.2, I

find that this condition holds if 1
2
ð1� yÞA2

qf
2
q �

1
2
ð1� yÞA2

s þ
1
2

A2
so0, i.e., if the parameter fq is not too large and

limfq!0 A2
qf

2
q ¼ 0. Tauchen emphasizes the importance of a similar condition.
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volatility is countercyclical as a result of rational asset evaluation. The explanations
provided in this article rely upon some fundamental facts that underlie rational asset
evaluation. I find that countercyclical return volatility is induced by large swings of risk
premia that occur when the economy moves away from good states. The logic behind this
explanation is intuitive. If asset prices are risk-adjusted, discounted expectations of future
dividends, then these expectations are worse in bad times than in good times. If changes in
these discounted expectations (and, hence, in the risk premia) are also more pronounced in
bad times than in good times, then price volatility is countercyclical.

This channel of asymmetric volatility relies on a framework in which the uncertainty about
the fundamentals of the economy is fixed and countercyclical stock market volatility is induced
by asymmetric movements of the risk premia. But I also analyze economies in which the
fundamentals are surrounded by fluctuating uncertainty, and study if and how the risk premia
for this uncertainty lead return volatility to be higher in bad times than in good.

My results hold for a fairly rich class of dynamic economies. For this reason, they
accomplish two tasks. First, they provide fresh directions into the search process for the
determinants of asymmetric volatility. Second, they highlight new asymmetric volatility
channels that any model should feature to be consistent with rational asset evaluation.
Models that do not activate these channels are likely to fail on one important dimension of
actual stock market fluctuations: the systematic occurrence of countercyclical movements
in return volatility.
Appendix

Notation. For any function f of a single variable x, I let f 0ðxÞ � d
dx

f ðxÞ and
f 00ðxÞ � d2

dx2
f ðxÞ. Moreover, for any vector a � ½a1 � � � aN �, I let kak

2 � a2
1 þ � � � þ a2

N .
Derivation of Eq. (7). To pin down EðyÞ in Eq. (7), I develop the pricing equation

0 ¼ xtDt dtþ Et½dðxtPtÞ�, obtaining

Et

dPt þDt dt

Pt

� �
¼ RðytÞdt� covt

dPt

Pt

;
dxt

xt

� �
¼ RðytÞdt� covt

dDt

Dt

;
dxt

xt

� �
� covt

dpðytÞ

pðytÞ
;
dxt

xt

� �
¼ ½RðytÞ þ bCFl1ðytÞ þ bP=DðytÞ � lðytÞ�dt, ð44Þ

where the second line follows by the definition of the price–dividend ratio pðytÞ ¼
Pt
Dt
, the

third line follows by Eqs. (4) and (6), and bCF and bP=D are as in the main text. &

The proof of Proposition 1 in Section 2 relies on the following preliminary result.

Lemma 1. Let fytgtX0 be the (strong) solution to

dyt ¼ bðytÞdtþ aðytÞdŴ t, (45)

where Ŵ is a multidimensional Q-Brownian motion, and b and a are some given functions

(a is vector-valued). Let r and c be two positive twice continuously differentiable functions,
and define,

cðy;TÞ � E exp �

Z T

0

rðytÞdt

� �
cðyT Þ

����y0 ¼ y

� �
. (46)
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The following statements are true
(a)
 If c040, c is increasing in y whenever r0p0. If c0 ¼ 0, c is decreasing in y whenever

r040.

(b)
 If c00p0 (respectively, c00X0) and c is increasing (respectively, decreasing) in y, c is

concave (respectively, convex) in y whenever b00o2r0 (respectively, b0042r0) and r00X0
(respectively, r00p0). Finally, if b00 ¼ 2r0, c is concave (respectively, convex) in y

whenever c00o0 (respectively, 40) and r00X0 (respectively,p0).
Proof. Let cðy;T � sÞ � E½expð�
R T

s
rðytÞdtÞ � cðyT Þ j ys ¼ y�. The function c is solution to

0 ¼ �c2ðy;T � sÞ þLcðy;T � sÞ � rðyÞcðy;T � sÞ; 8ðy; sÞ 2 R� ½0;TÞ;

cðy; 0Þ ¼ cðyÞ; 8y 2 R;

(
(47)

where Lcðy; uÞ ¼ 1
2
kaðyÞk2cyyðy; uÞ þ bðyÞcyðy; uÞ, c2ðy; uÞ � cuðy; uÞ, and subscripts denote

partial derivatives. By differentiating Eq. (47) twice with respect to y, I find that cð1Þðy; tÞ �
cyðy; tÞ and cð2Þðy; tÞ � cyyðy; tÞ are solutions to the following partial differential equations:

0 ¼ � c
ð1Þ
2 ðy;T � sÞ þ 1

2
kaðyÞk2cð1Þyy ðy;T � sÞ þ bðyÞ þ

1

2

d

dy
kaðyÞk2

� �
cð1Þy ðy;T � sÞ

� ½rðyÞ � b0ðyÞ�cð1Þðy;T � sÞ � r0ðyÞcðy;T � sÞ, ð48Þ

where cð1Þðy; 0Þ ¼ c0ðyÞ and

0 ¼ � c
ð2Þ
2 ðy;T � sÞ þ

1

2
kaðyÞk2cð2Þyy ðy;T � sÞ þ bðyÞ þ

d

dy
kaðyÞk2

� �
cð2Þy ðy;T � sÞ

� rðyÞ � 2b0ðyÞ �
1

2

d2

dy2
kaðyÞk2

� �
cð2Þðy;T � sÞ

� ½2r0ðyÞ � b00ðyÞ�cð1Þðy;T � sÞ � r00ðyÞcðy;T � sÞ, ð49Þ

where cð2Þðy; 0Þ ¼ c00ðyÞ.
By the Feynman and Kac theorem, the solution to Eq. (48) is

cð1Þðy;T � sÞ ¼ E

Z T

s

kðs; tÞð�r0ðytÞÞcðyt;T � tÞdt
����ys ¼ y

� �
þ E½kðs;TÞc0ðyT Þjys ¼ y�,

(50)

where kðs; tÞ ¼ expf�
R t

s
½rðyuÞ � b0ðyuÞ�dug, and y is the solution to Eq. (45), but with drift

equal to bþ 1
2
d
dy
kak2 [which is the drift multiplying cð1Þy in Eq. (48)]. Hence, cð1Þðy;T � sÞ40

8ðy; sÞ 2 R� ½0;TÞ whenever r0ðyÞo0 and c0ðyÞ40 8y 2 R. This completes the proof of
Part (a) of Lemma 1. The proof of Part (b) is obtained similarly. &

Proof of Proposition 1 (Part (a)). By Eq. (1), the price–dividend ratio satisfies

pðyÞ ¼

Z 1
0

Bðy; tÞdt, (51)
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where

Bðy; tÞ ¼ E bt � exp �

Z t

0

ðRðyuÞ þ s0lðyuÞ � g0Þdu

� �����y0 ¼ y

� �
� Ē exp �

Z t

0

RðyuÞ þ s0lðyuÞ � g0

� �
du

� �����y0 ¼ y

� �
, ð52Þ

E½�� is the expectation under the risk-neutral probability Q, Ē½�� is the expectation

taken under a new measure Q̄ defined as dQ̄=dQ ¼ bt � expð�1
2
s20tþ s0Ŵ 1tÞ, and Ŵ 1 is

the Brownian motion under Q, defined as Ŵ 1 ¼W 1 þ
R
l1ðytÞdt. Under Q̄, yt is the

solution to

dyt ¼ mðytÞ �
X2
i¼1

liðytÞviðytÞ þ s0v1ðytÞ

" #
dtþ v1ðytÞdW̄ 1t þ v2ðytÞdW̄ 2t, (53)

where W̄ 1 is a Q̄-Brownian motions and W̄ 2 ¼ Ŵ 2. In Eq. (51), fBðy; tÞgtX0 is a collection of

bond prices in a fictitious economy in which the instantaneous interest rate is

rðyÞ � RðyÞ þ s0l1ðyÞ � g0, and the risk-neutral probability measure is Q̄. By Lemma 1a,

for all t, Byðy; tÞ40 whenever r0ðyÞ ¼ R0ðyÞ þ s0l
0
1ðyÞo0, i.e., whenever the risk-adjusted

discount rates are countercyclical. Finally by Lemma 1b, for all t, Byyðy; tÞo0 whenever
d2

dy2
½mðyÞ þ s0v1ðyÞ �

P2
i¼1 liðyÞviðyÞ�o2r0ðyÞ and r00ðyÞ40, for all y. By the definition of r,

these two inequalities are exactly those given in Conditions a.1 and a.2 of Proposition 1a. &

To ease notation, let RðyÞ � DiscðyÞ ¼ RðyÞ þ s0l1ðyÞ, m̂ � mðyÞ �
P2

i¼1 liðyÞviðyÞ and
m̄ðyÞ � m̂ðyÞ þ s0vðyÞ. One set of technical regularity conditions required in the main text is

H1: The functions R, m̄; m̂ and v satisfy the following conditions:
(i)
 miny2ðy;ȳÞRðyÞ4g040.
(ii)
 limy!y m̄ðyÞX0.
(iii)
 The functions ½jm̄ðyÞj þ viðyÞ�
jR0ðyÞj
RðyÞ

(i ¼ 1; 2Þ, and kvðyÞk2jR
00ðyÞj

RðyÞ
are bounded.
(iv)
 The functions j ddy
m̄ðyÞj, j½m̂ðyÞ þ viðyÞ�

R00ðyÞ
R0ðyÞ
j ði ¼ 1; 2Þ, and kvðyÞk2jR

000ðyÞ
R0ðyÞ
j are bounded.
Condition H1-i is an integrability condition. Condition H1-ii requires that under the
measure Q̄ introduced in Eqs. (19) and (51), y is mean reverting in a neighborhood of y.
Finally, Condition H1-iii (respectively, H1-iv) bounds the rate of explosion of RðyÞ
(respectively, R0ðyÞ) to infinity. I now prove Part (b) of Proposition 1.

Proof of Proposition 1 (Part (b)). By assumption, RðyÞ is strictly positive. Hence RðytÞ ¼

Rðy0Þwtða;bÞ, wtða;bÞ � expf
R t

0 ½aðysÞ �
1
2
ðb1ðysÞ

2
þ b2ðysÞ

2
Þ�dsþ

R t

0

P
i¼1;2 biðysÞdW̄ isg,

where W̄ i (i ¼ 1; 2) are Q̄-Brownian motions and

aðyÞ � m̄ðyÞ
R0ðyÞ

RðyÞ
þ

1

2
kvðyÞk2

R00ðyÞ

RðyÞ
and ð54Þ

biðyÞ � viðyÞ
R0ðyÞ

RðyÞ
; i ¼ 1; 2. ð55Þ
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By Eq. (51), the price–dividend ratio pðyÞ is the solution to the following differential
equation:

0 ¼ 1
2
kvk2p00 þ ðmþ s0v1 � l � vÞp0 � ðR� g0 þ s0l1Þpþ 1, (56)

where v � ½v1v2�. The Feynman and Kac representation of p in Eq. (56) is

pðyÞ ¼ Ē

Z 1
0

e
g0t�
R t

0
RðyuÞdu

dt

����y0 ¼ y

� �
¼ Ē

Z 1
0

e
g0t�RðyÞ

R t

0
wuða;bÞdu

dt

����y0 ¼ y

� �
, (57)

where Ē denotes expectation under Q̄. By assumption, limy!y RðyÞ ¼ 1 (large discount-

ing). By H1-i, miny2ðy;ȳÞRðyÞ4g0. Hence by dominated convergence and H1-iii,

limy!y pðyÞ ¼ 0. By Eq. (56),

1
2
kvk2p00 ¼ �1þ ðR� g0Þp� ðmþ s0v1 � l � vÞp0. (58)

Now suppose that limy!y p0ðyÞ ¼ 1. This implies that limy!y p00ðyÞo0. Alternatively,

assume that limy!y p0ðyÞo1. By H1-ii, limy!yðmðyÞ þ s0v1ðyÞ � ðl � vÞðyÞÞX0. As shown

above, limy!y pðyÞ ¼ 0. Hence, Eq. (58) implies that for small y, 1
2
kvk2p00p� 1þRp.

Hence, limy!y p00ðyÞo0 whenever limy!y RðyÞpðyÞ ¼ 0. But again inf tðRðytÞÞ4g0, and the

result follows by H1-iii and dominated convergence,

lim
y!y

RðyÞpðyÞ ¼ lim
y!y

Ē

Z 1
0

eg0tRðyÞe
�
R t

0
RðyuÞdu

dt

����y0 ¼ y

� �
¼ lim

y!y
Ē

Z 1
0

eg0tðRðyÞe
�RðyÞ

R t

0
wuða;bÞ du

Þdt

����y0 ¼ y

� �
¼ 0. ð59Þ

Next, suppose that DiscðyÞ is bounded, but that R0ðyÞo0 and that limy!y R
0ðyÞ ¼ �1

(large asymmetry in discounting). Because R0ðyÞ is strictly negative, it satisfies

R0ðŷtÞ ¼ R0ðyÞwtðâ; b̂Þ, where now wtðâ; b̂Þ � expf
R t

0
½âðysÞ �

1
2
ðb̂1ðysÞ

2
þ b̂2ðysÞ

2
Þ�dsþR t

0

P
i¼1;2 b̂iðysÞdŴ isg and

âðyÞ � m̂ðyÞ
R00ðyÞ

R0ðyÞ
þ

1

2
kvðyÞk2

R000ðyÞ

R0ðyÞ
and ð60Þ

b̂iðyÞ � viðyÞ
R00ðyÞ

R0ðyÞ
; i ¼ 1; 2. ð61Þ

Moreover, by differentiating Eq. (58), and applying the Feynman and Kac representation
to the solution of the resulting differential equation (similarly as in the proof of Lemma 1),
I find that

p0ðyÞ ¼ �E

Z 1
0

ktR
0ðytÞpðytÞdt

����y0 ¼ y

� �
¼ �R0ðyÞE

Z 1
0

ktwt a; bð ÞpðytÞdt

����y0 ¼ y

� �
,

(62)

where the second line follows by the solution for R0ðyÞ, the process kt is such that

� d
dt
log kt ¼ RðytÞ � g0 �

d
dyt

mðytÞ þ s0v1ðytÞ � lðytÞ � vðytÞ
� �

, and, finally, yt is the

solution to

dyt ¼MðytÞdtþ vðytÞdŴ t; y0 ¼ y, (63)
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where M ¼ mþ s0v1 � l � vþ 1
2
ð d
dy
kvk2Þ. By limy!y R

0ðyÞ ¼ �1 and R bounded,

limy!y p0ðyÞ ¼ 1, and hence, limy!y p00ðyÞo0. &

Proof of Proposition 1 (Necessary conditions for countercyclical price sensitivity

SpðyÞ ¼ p0ðyÞ). By differentiating Eq. (58) twice and applying the Feynman and Kac
representation to the solution of the resulting differential equation (similarly as in the
proof of Lemma 1 and Proposition 1b),

p00ðyÞ ¼ E

Z 1
0

zt AðytÞp
0ðytÞ �R00ðytÞpðytÞ

� �
dt
��y0 ¼ y

� �
, (64)

where zt is some strictly positive adapted process, and the function AðyÞ has been defined
in Proposition 1a. Because discount rates are countercyclical, p040 by the proof of
Proposition 1a. Then suppose that p is concave (i.e., p00o0). By Eq. (64), there must be a
set of values of y with strictly positive measure on which either AðyÞo0 or R00ðyÞ40, or
both. &

Finally, I provide a proof of a claim made in Section 2.2 (in fact, a direct corollary to
Lemma 1). Under risk-aversion corrections comparable to those discussed in Section 2.2,
the investors’ expectation of the future discount rates DiscðytÞ fluctuates more in bad times
than in good times.

Corollary 1. Suppose that the discount rates are countercyclical but not necessarily

asymmetric, i.e., d2

dy2
DiscðyÞo0 and d2

dy2
DiscðyÞX0, and that, under the probability Q̄ in Eq.

(19), the expectation of the instantaneous changes in yt is concave in the current state y, i.e.,
d2

dy2
m̄ðyÞo0. Then the expectation under Q̄, Ē½DiscðytÞjy0 ¼ y� is decreasing and convex in y,

for all t.

Proof. Follows by Lemma 1, after setting cðyÞ � DiscðyÞ, rðyÞ � 0 and bðyÞ � m̄ðyÞ. &

Proof of Proposition 2. The proof is similar to the proof of Lemma 1 and Proposition 1.
For space reasons, it is sketched. By no-arbitrage, the price–dividend ratio p satisfies

0 ¼ 1
2
s2xpxx þ ½gðx̄� xÞ � lxsx�px þ

1
2
s2s pss þ ½kðs̄� sÞ � lsss�ps

þ 1
2s

2
qpqq þ ½bðq̄� qÞ � lqsq�pq � ðRþ lDsD � xÞpþ 1. ð65Þ

By differentiating the previous equation twice with respect to s and once with respect to q

leaves three differential equations taking the form Liwi � riwi þ hi
¼ 0, where w1 ¼ ps,

w2 ¼ pss, w3 ¼ pq, and ri and hi are some functions of x, s and q. By the same arguments
used for the proof of Lemma 1, the sign of wi is inherited by the sign of the functions hi.
The functions hi are

h1
� �

qDisc

qs
p, (66)

h2
� � 2

qDisc

qs
þ

q2ðlsssÞ

qs2

� �
ps �

q2Disc

qs2
p, (67)

h3
� �

qDisc

qq
p�

qðlsssÞ

qq
ps þ

1

2

qs2s
qq

pss. (68)
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Part (a) of the proposition follows by the expression for h1 and the assumption that
q
qs
Disc40. As regards Part (b), we have that pqo0 whenever h3o0. Because q

qs
Disc40,

then pso0. Hence, if �qðlsssÞ

qq
40, as assumed in Part (b), then pqo0 under Condition b.1.

Moreover, if �qðlsssÞ

qq
40, then Condition b.1 ¼) Condition b.2 because, again, q

qs
Disc40

and hence pso0. Finally, notice that the conditions in Eqs. (37)–(38) in the main text imply

that h2o0 and hence, psso0. &

Interest rate and risk premia in a nonexpected utility environment [Eq. (40)]. By
assumption, consumption growth is solution to Eq. (39), and expected consumption
growth xt, consumption volatility st, and the volatility of volatility qt are mean-reverting
processes:

xtþDt � xt ¼ gðx̄� xtÞDtþ sx�2;tþDt

ffiffiffiffiffi
Dt
p

,

stþDt � st ¼ kðs̄� stÞDtþ ssðst; qtÞ�3;tþDt

ffiffiffiffiffi
Dt
p

,

qtþDt � qt ¼ bðq̄� qtÞDtþ sqðqtÞ�4;tþDt

ffiffiffiffiffi
Dt
p

, (69)

where �t ¼ ½�1t; � � � ; �4t�
> is a vector of independent and identically distributed standard

normal variables [�1t has been defined in Eq. (39)]. Let ~RtþDt be the arithmetic return in
Eq. (40),

~RtþDt �
PtþDt þDtþDtDt� Pt

Pt

¼ EtDtþ Volt � �tþDt

ffiffiffiffiffi
Dt
p

, (70)

where Et are the expected returns, and Volt is the vector of return volatilities. (Et and Volt
are pinned down below.) The log-pricing kernel in Eq. (40) satisfies

log xtþDt � log xt ¼ �yrDt�
y
c
log

DtþDt

Dt

� �
þ ðy� 1Þ logð1þ ~RtþDtÞ, (71)

where

logð1þ ~RtþDtÞ ¼ ~RtþDt �
1
2
kVolt � �tþDtk

2DtþOpðDt
3
2Þ. (72)

Taking the limit Dt! 0, and applying the Itô’s multiplication rule,

d log xt ¼ �yrdt�
y
c
d logDt þ ðy� 1Þ

dPt þDt dt

Pt

�
1

2
kVoltk

2 dt

� �
, (73)

where Dt is as in Eq. (31). For small Dt, the return in Eq. (70) satisfies

dPt þDt dt

Pt

¼ Et dtþ Volt dW t, (74)

where E is as in Eq. (35) and, by Itô’s lemma applied to the price function
PðD; x; s; qÞ ¼ D � pðx; s; qÞ, the vector Vol ¼ ½Vol1; � � � ;Vol4� is as in Eq. (34). Therefore,
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by Itô’s lemma,

dxt

xt

¼ �yr�
y
c
dEðlogDtÞ

dt
þ ðy� 1ÞEt �

1

2
ðy� 1ÞkVoltk

2

�
þ
1

2
Z2s2D;t þ

1

2
ð1� yÞ2kVol�t k

2

�
dt�

y
c
sD;t dW 1;t þ ðy� 1ÞVolt dW t, ð75Þ

where sDt ¼ sDðstÞ and Vol� ¼ ½Vol2;Vol3;Vol4�. The expressions for the risk premia li in
the main text follow immediately. The solution for the interest rate is obtained by plugging
Eq. (35) into the drift of the previous equation, by identifying the drift in Eq. (33), and by
rearranging terms. (Detailed computations are available upon request.)
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