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Abstract

Recent explanations of aggregate stock market fluctuations suggest that countercyclical stock
market volatility is consistent with rational asset evaluations. In this paper, I develop a framework to
study the causes of countercyclical stock market volatility. I find that countercyclical risk premia do
not imply countercyclical return volatility. Instead, countercyclical stock volatility occurs if risk
premia increase more in bad times than they decrease in good times, thereby inducing price—dividend
ratios to fluctuate more in bad times than in good. The business cycle asymmetry in the investors’
attitude toward discounting future cash flows plays a novel and critical role in many rational
explanations of asset price fluctuations.
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1. Introduction

Why does stock market volatility vary over time? Economists have been intrigued by
this issue for decades. For example, Schwert (1989b) finds that the volatility of no single
macroeconomic variable could help explain low frequency movements of aggregate stock
market volatility. Yet stock market volatility is related to the business cycle. A number of
empirical studies confirm further findings from Schwert (1989a, b) that the volatility of
stock returns is higher in bad times than in good times (see, e.g., Brandt and Kang, 2004,
and the additional evidence provided here). This paper addresses an important but still
unanswered question: Why is stock market volatility asymmetric over the business cycle?

My central result is that, in economies with rational expectations, return volatility is
countercyclical because risk premia (i.e., the compensation investors require to invest in
the stock market) change asymmetrically in response to variations in economic conditions.
That risk premia are countercyclical has been a widely known empirical fact since the
seminal contributions of Fama and French (1989) and Ferson and Harvey (1991).
However, the main message of this paper is not a simple statement that risk premia must
be countercyclical to generate countercyclical return volatility. Instead, the crucial point is
that, to induce countercyclical return volatility, risk premia must increase more in bad
times than they decrease in good times, a new hypothesis that I support with substantial
empirical evidence.

So why do asymmetric risk premia fluctuations translate into countercyclical return
volatility? Consider Fig. 1, in which I assume that the investors’ risk-adjusted discount
rates are inversely and asymmetrically related to some variable y that tracks the state of the
economy. This asymmetry implies that in good times investors do not significantly alter the
discount rates used to evaluate future dividends. Consequently, price—dividend ratios do
not fluctuate widely in good times. In bad times, however, the investors’ discount rates are
extremely sensitive to changes in economic conditions. Therefore, variations in the
price—dividend ratios become increasingly volatile as economic conditions deteriorate. The
main result of this paper is that these asymmetric movements of the price—dividend ratios
occur when the asymmetry in discounting is sufficiently pronounced. I calculate a
theoretical lower bound for the asymmetric movements of the risk premia that triggers the
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Fig. 1. Countercyclical return volatility. If price—dividend ratios are concave in some state variable y tracking the
state of the economy, then return volatility increases on the downside and is consequently countercyclical.
According to the theory in this article, price—dividend ratios are concave in y if the risk-adjusted discount rates are
decreasing and sufficiently convex in y.
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previous asymmetric variations in the price—dividend ratios. This bound can be tight. For
example, economies exist in which risk premia are countercyclical but do not satisfy this
bound and, consequently, induce price—dividend ratios to fluctuate more in good times
than in bad.

Naturally, countercyclical return volatility could also arise because the volatility of the
state variables in the economy is inherently countercyclical. Alternatively, the conditions
developed here highlight the mechanism through which countercyclical return volatility is
endogenously induced by rational fluctuations of the price—dividend ratio. Moreover,
empirical evidence suggests that price—dividend ratios exhibit the pattern predicted in this
paper. I find that, over the last 50 years, price—dividend ratios movements in the US have
been asymmetric over the business cycle: Downward changes occurring in recessions have
been far more severe than upward changes during expansions.

In the economy I study, dividend growth is independent and identically distributed,
while interest rates and risk premia are driven by a state variable that is interpreted
as an index of the state of the economy. This economy is rich enough to include many
model examples in the literature. The distinctive feature of this article is the way I deal
with interest rates and risk premia. The standard approach is to link interest rates and
risk premia to markets, preferences, and technology (e.g., Basak and Cuoco, 1998;
Campbell and Cochrane, 1999; Jermann, 2005) or in general to make use of higher
level assumptions about the exact relations among interest rates, risk premia, and the
primitives of the economy (e.g., Brennan, Wang, and Xia, 2004; Lettau and Wachter,
2007).

In this paper, I take an opposite approach. Instead of making assumptions on interest
rates and risk premia, I look for pricing kernels that make return volatility countercyclical.
It is this search process that leads to the predictions summarized in Fig. 1. One additional
contribution of the paper is to use these new predictions to understand when, why, and
how models with time-varying discount rates could predict countercyclical volatility. For
example, in a seminal contribution Campbell and Cochrane (1999) find that models with
external habit formation might lead to countercyclical volatility. This paper explains the
rationale behind this important result. At the same time, the predictions developed here go
well beyond the case of habit formation.

Countercyclical stock volatility is an empirical observation related to the so-called
feedback effect; i.e., the effect by which asset returns and return volatility are negatively
correlated. Indeed, this paper shows that a pronounced asymmetric behavior of the risk
premia leads return volatility to be higher in bad times (when ex post returns are low) than
in good (when ex post returns are high). Moreover, the asymmetric behavior of the risk
premia could help explain why return volatility increases after prices fall. According to the
explanations summarized in Fig. 1, return volatility increases after a price drop, i.e., when
the price—dividend ratios enter the volatile region in Fig. 1.

Campbell and Hentschel (1992) develop the first partial equilibrium explanation for the
feedback effect. But, their explanation relies on a different channel. In the Campbell and
Hentschel economy, the negative correlation between return volatility and returns arises
through the combination of two inextricable effects: first, risk premia rise (and hence prices
fall) with the volatility of dividend news; second, return volatility increases with the
volatility of dividend news. Thus, in the Campbell and Hentschel economy the feedback
effect arises because there is fluctuating economic uncertainty (i.e., dividend volatility is
random) and investors fear this uncertainty.



A. Mele | Journal of Financial Economics 86 (2007) 446478 449

Wu (2001), Bansal and Yaron (2004), and Tauchen (2005) reconsider this channel of
fluctuating economic uncertainty. Bansal and Yaron as well as Tauchen show that, in
general equilibrium, investors with a preference for early resolution of uncertainty require
compensation for economic uncertainty, thereby inducing negative co-movements between
ex post returns and return volatility. This explanation of the feedback effect is not
inconsistent with my explanation based on an asymmetric behavior of the risk premia. In
fact, the last contribution of this paper is an extension of my previous analysis to
economies in which the fundamentals are surrounded by fluctuating uncertainty.

I consider two sources of volatility for the fundamentals of the economy. One is related
to uncertain consumption growth volatility while the other, suggested by Tauchen (2005),
relates to higher order uncertainty about consumption growth (the volatility of volatility).
I show when and how the risk premia for these sources of uncertainty make prices fall after
a rise in economic uncertainty. I provide a new role for the price—dividend ratio. For
example, the relation between prices and the volatility of volatility is not uniquely tied
down by the level of the volatility risk premia. It also depends on how asymmetrically the
price—dividend ratio reacts to changes in consumption growth volatility. Moreover, I show
that if investors have a preference for early resolution of uncertainty, an increase in the
economic uncertainty can lower the risk-free rate, thereby producing a positive relation
between asset prices and economic uncertainty. In particular, I show that the feedback
effect arises when the volatility of volatility is not too responsive to changes in volatility,
thereby dampening the effects associated with the preference for early resolution of
uncertainty. I use these novel insights to shed new light on previous models of fluctuating
economic uncertainty.

The main scope of this paper is to isolate the business cycle determinants of return
volatility. Its focus is on channels of asymmetric volatility that are markedly distinct from
the leverage effects (the effects by which an increase in the debt-to-equity ratio boosts
firms’ volatility). Instead, the general equilibrium analysis of leverage effects is in Aydemir,
Gallmeyer, and Hollifield (2005), who conclude that these effects have marginal
quantitative implications at the market level.

The paper is organized as follows. In Section 2, I develop the core analysis. Section 3
hinges upon this analysis and provides examples of economies with countercyclical stock
volatility. It also contains a calibration experiment to illustrate the key quantitative
implications of the paper. Section 4 develops extensions and identifies conditions under
which fluctuating economic uncertainty induces asset returns and volatility to co-move
negatively. Section 5 concludes. The appendix contains technical details and proofs.

2. The dynamics of volatility under general no-arbitrage restrictions

This section develops the main result of the paper. In Section 2.1, I describe the
economic environment. In Sections 2.2 and 2.3, I present and discuss general test
conditions under which the volatility of asset returns is countercyclical.
2.1. The economy

I consider a pure exchange, frictionless economy endowed with a single consumption

good. Let the process {D;},~, be the instantaneous rate of consumption. I assume that
consumption equals the dividends paid by a long-lived asset. Accordingly, the terms
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“consumption” and ‘“‘dividends” are used interchangeably. Let {y,},~( be an additional
state variable. [ assume that (D, y,) forms a diffusion process. A long-lived asset is an asset
that promises to pay {D;},~. Let {P;},~, be the corresponding asset price process. As is
well known, the absence of arbitrage opportunities implies that there exists a positive
pricing kernel {¢,},5( such that

P& —E, { / Ve, ds}, 10, (1)

where E,[-] denotes the expectation operator conditional on the information available at
time 7. Bubbles are not considered in this paper. Moreover, I assume that the total
consumption endowment D; is generated by a geometric Brownian motion
dD
—— = godt +aodWy,, )
D,
where W is a standard Brownian motion and g, and o are positive constants. Finally, the
state variable y, is a stationary process. It solves

dy, =m@,)dt +o,(y)dW i + v2(y,) d Wy, (3)

where W, is another independent standard Brownian motion, and m, vy, and v, (v;>0,
i = 1,2) are given functions that guarantee a strong solution to the previous equation. It is
well known (e.g., Duffie, 2001) that in this environment the pricing kernel &, in Eq. (1) is
the solution to

d
% = Redt = AW — d AW, G = 1, 4
t

for some processes R; and ;. The economic interpretation of R and /; is also standard. In
Eq. (4), R is the instantaneous interest rate and A = [1;4,]" is the vector of unit prices of
risk related to the sources of risk W and ;. I now formulate the main assumption in this

paper.

Assumption 1 (Scale-invariant economies). The instantaneous interest rate, R, and the unit
prices of risk, 4;, are functions of the state variable y only. That is, R, = R(y,) and
Air = Ai(y,), where the functions R(y), 41(»), and 4»(y) are twice continuously differentiable.

Assumption 1 guarantees that the price—dividend ratio P,/D, is a function p of the state
variable y, only,

= =P00), ®)

whence the scale-invariant terminology. In many existing models, y, is a variable related to
the general state of the economy, i.e., an expansion state variable summarizing the business
cycle conditions (see Section 3). This is also the interpretation of y, here. Accordingly, I
refer to the state variable y, as the state of the economy and to any variable positively
(negatively) correlated with y, as procyclical (countercyclical).

'The conditional expectation in Eq. (1) is taken with respect to the filtration generated by the Brownian motions
driving the dynamics of (D,,y,) [see Egs. (2) and (3) below], augmented by the null sets. Proposition 1 shows that,
under Assumption 1, the relevant conditioning information at time ¢ is the state (D;, y,) at time .
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Which properties of the price-dividend ratio p are sought in this model? We want that
the price—dividend ratio p reacts asymmetrically to changes in y,. Precisely, we want that
the price—dividend ratio decreases more in bad times (when y, is low) than it increases in
good times (when y, is high). A key observation is that, to satisfy this property, the
price—dividend ratio must be increasing and concave in y,, as Fig. 1 suggests.

To formalize this intuition, let p'(y) = (d/dy)p(y) and p”(y) = (d*/dy*)p(y) denote the
first and second order derivatives of the price—dividend ratio with respect to y, respectively,
and consider the pricing equation 0 = &,D, dt + E,[d(¢,P,)]. Under regularity conditions,?
an application of It6’s lemma to the definition of returns (dP, + D,d?)/P; yields

Returns, = &(y,)dt + Vol (y,)d Wy, + Vola(y,) d W, 6)
where

&(y) = Expected returns = R(y) + fcp1(v) + Bp/p(») - A(y) and (7

Vol(y) = [Voli(y) Vol»(y)] = Return volatility = [Bcg + Bp/p1(¥) Bp/p2(0)], (®)

and the two components of fp/p (i.e., fp/p; and fpp,) and fcp are given by

ﬁP/D,i(y) = Ui(y)%, i= 1,2 and (9)

Bcr = oo. (10)

For reasons developed below, it is also important to analyze the determinants of the
price—dividend ratio volatility. By another application of 1t6’s lemma,

dp(yz) = Et[dp(yt)] + VOIIIJ(yr) d Wi+ VOIIZ)(yt) d W, (1 1)
where

Vol’(y) = [Vol{(y) Vol5(y)] = Price—dividend ratio volatility = [v1(y) v2(»)] - p'(»).
(12)

As is clear, return volatility in Eq. (8) is affected by the two volatility components v;(y,)
of y, (which are exogenous) and by the term p'(y,)/p(y,) (which is endogenous). The
endogenous term p'(y,)/p(y,) is the price-induced component of return volatility. It is
decreasing in y,, and thus countercyclical, whenever the price—dividend ratio p is increasing
and concave in y,, i.e., p'(y,)>0 and p”(y,)<0. The intuition here is that asymmetric
fluctuations in the price—dividend ratio induce return volatility to increase on the
downside. However, because the price—dividend ratio is endogenous, not all possible
primitives in the economy lead to this asymmetry. We therefore need to figure out the right
primitives (m,v;, and v;), interest rates, and risk premia that do create the desired
asymmetric pattern.

Definition 1 summarizes the key features needed from the price—dividend ratio to induce
asymmetric movements in return volatility.

The basic regularity conditions in this paper are that the price-dividend ratio p is twice differentiable and that
it and its derivatives admit the Feynman and Kac representation. See Mele (2003, 2005) for technical details and
references related to the feasibility of these conditions in both finite and infinite horizon settings.
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Definition 1 (Asymmetric return volatility). Return volatility is asymmetric if the two
volatility components of Vol(y) = [Vol;(y) Vol,(¥)] in Eq. (8) are countercyclical, i.e., if
Vol;(y) is decreasing in y for i = 1,2. Moreover,

(a) The price-induced component of return volatility in Eq. (8) is asymmetric if the price-
elasticity E,(y) = p'(y)/p(») is countercyclical, i.e., if E,(y) is decreasing in y.

(b) The price-induced component of the price—dividend ratio volatility in Eq. (12) is
asymmetric if the price-sensitivity S,(y) = p'(y) is countercyclical, i.e. if S,(y) is
decreasing in y.

Eq. (8) shows that return volatility is asymmetric if the price—dividend betas fip p /(v,) =
@' (y,)/p(y)vi(y,) are countercyclical. This property occurs if the volatilities of y,, v;(y,),
and the price-elasticity E,(y,) are both countercyclical. Because the volatilities v;(y,) are
exogenous, they play a relatively straightforward role in this paper. The more ambitious
purpose here is to focus on channels of asymmetric volatility arising through no-arbitrage,
countercyclical movements of the price-elasticity and the price-sensitivity.’

The condition that the price-sensitivity S,(y,) be countercyclical is important for at least
two reasons. First, there is strong evidence in the US that the price—dividend ratios
decrease more in bad times (during recessions) than they increase in good times (during
expansions) (see Section 3.3). A satisfactory explanation of asymmetric volatility must be
consistent with this important empirical regularity. Second, the empirical evidence in this
paper suggests that variations in the level of the price—dividend ratios display counter-
cyclical volatility in the US. Both of these empirical regularities can be made consistent
with rational asset evaluation if the price-sensitivity S,(y,) is countercyclical.

2.2. The cyclical properties of price— dividend ratios and return volatility

I now proceed to state the main result of the paper. To prepare the discussion of this
result, it is useful to introduce two fundamental concepts. First, define

2
wi(y) = m(y) — > L@Iviy,) + covi(y). (13)
i=1

In short, m(y,) equals the risk-adjusted drift d% E(y)lemr = m(y,) — Ele},i(yl)vf(yl), plus the
instantaneous covariance between dividend growth %D” and changes in the state dy,, i.e.,

cov,(dD—Dr’, dy,) = %E,[(DTD”Df)(yT — ¥)li=; = oov1(y,). The conditional expectation E,(-) is
taken under the risk-neutral probability, defined through the risk-neutral evaluation
equation E,(dP,)+ D,dt = R,P,dt. Note that I am not assuming that the risk-neutral
probability is unique in the model. Instead, I am looking for pricing kernels (and, hence,
risk-neutral probabilities) that make return volatility asymmetric.

The second important definition relates to the expected returns in Eq. (7), which I

decompose as

&(y) = Disc(y) + Bp/p(») - A1), (14)

3The price-elasticity E,(y) in Definition la parallels the notion of relative basis risk for a discount bond
introduced by Cox, Ingersoll, and Ross (1979, p. 56). I refer to E,(y) as “elasticity,” not “‘semi-elasticity,” to
simplify the exposition.
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where

Disc(y) = R(y) + fcr/1() (15)

are the discount rates adjusted for cash flow risk (concisely, the risk-adjusted discount
rates) and fp/p(y) - A(y) is the additional compensation for the risk of fluctuations in the
price—dividend ratio. In this model, both 4;(») and the cash flow beta fp are exogenous.
Therefore, the discount rates Disc(y) are also exogenous. In contrast, the vector of
price—dividend betas fp/p(y) is endogenous as it depends on the properties of the
price—dividend ratio.

Proposition 1 isolates the key properties of the price—dividend ratio along with their
implications on the volatility components in Definition 1.

Proposition 1. Let the endowment process be as in Eq. (2), interest rates and unit-risk premia
be as in Assumption 1, and {y,},~ be the solution to Eq. (3). Then, the price P; is such that
P, = D, - p(y,), where p is a positive function satisfying the following properties:

(a) Suppose that the risk-adjusted discount rates Disc(y) are countercyclical, i.e.,
d%,Disc(y)<0. Then, the price—dividend ratio is procyclical, i.e., diyp(y)>0. Moreover,
suppose that

(a.1) (ﬁ—?zDisc(y)>0 (Asymmetric discount rates), and

@2 Ay = cﬂ%m(y) — 2(% Disc(y) <0 (Asymmetric expectations). Then, the price—di-
vidend ratio reacts asymmetrically to variations in the state of the economy, i.e., it is
concave in y: % p(»)<0. Consequently, (1) the price-induced components of

volatility in Definition 1 are asymmetric and (i) the return volatility Vol(y) in
Eq. (8) is countercyclical for all values of the state y on which the volatilities of the
state v;(y) are not increasing.

(b) Suppose that y € (y,7) for two constants y and j, and assume that one of the two
Jollowing conditions holds true: (i) lim,_,, Disc(y) = oo (Large discounting) or (ii) the
risk-adjusted discount rates Disc(y) are bounded and decreasing in'y for all y € (y, 7), but
lim},ﬁl,d%,Disc(y) = —oo (Large asymmetry in discounting). Then, under the technical
regularity conditions in the appendix (conditions HI), there exists a threshold level
of the state y*>y such that the conclusions of the previous part hold true for all

ye @y

Conversely, suppose that the discount rates Disc(y) are countercyclical and that the
price-induced components of volatility in Definition 1 are asymmetric. Then, either Condition
a.l or Condition a.2, or both, hold on some range of the state y having strictly positive
probability.

Proposition 1 identifies necessary and sufficient conditions leading to asymmetric
volatility through countercyclical movements of the price-elasticity £,(y,) and the price-
sensitivity S,(y,). In Section 3.3, I produce a calibration experiment to assess the extent to
which these conditions are consistent with the empirical evidence on risk premia and the
price—dividend ratios in the US. I now develop the economic interpretation of the
conditions in Proposition 1.
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2.3. Discussion

Proposition 1 imposes joint restrictions on the price—dividend ratio, the law of motion
for the state variable y, (i.e., on m, v, and v3), and the risk-adjusted discount rates Disc(y,)
introduced in Eq. (15). The first restriction in Part (a) formalizes a well known concept. If
risk-adjusted discount rates are countercyclical, price—dividend ratios are procyclical. For
example, suppose that investors become more risk-averse during recessions. Then, in bad
times investors discount future cash flows more heavily, thereby driving price—dividend
ratios down.

Proposition la isolates the conditions under which the price-dividend ratio reacts
asymmetrically to changes in the state of the economy. It imposes two basic conditions.
The first condition, a.l, requires that the discount rates increase more in bad times than
they decrease in good times. The economic intuition underlying this condition has been
developed in the Introduction (see Fig. 1). While somewhat technical, the second
condition, a.2, is also economically important. Consider the evaluation formula in Eq. (1).
Under the risk-neutral probability,

Py o — [ R, du Dy
Do Wi D gy
D UO ¢ D

Yo :y}

[o.¢] ~
o {/ o Jo RO du e(go—% a)i= [y o) dutog 1, g,
0

Yo =y], (16)

where the second equality follows by applying 1t6’s lemma to Eq. (2), W, is a standard
Brownian motion under the risk-neutral probability Q (say), and the risk-adjustment term
fé oo41(y,)du arises as the conditional expectation [E[-|y, = »] is taken under the risk-
neutral probability. By replacing the definition of Disc(y) = R(y) + go41(y) in Eq. (15) into
the previous equation, we can rewrite the price—dividend ratio % = p(y) as follows,

o0 * T
oy =] [ 21 s
0

Eq. (17) is a present value formula in which a fictitious risk-unadjusted dividend growth Dg
is discounted using the risk-adjusted rates Disc(y). According to Eq. (17), changes in prices
reflect the investors’ risk-adjusted expectation about the future state of the economy and,
hence, the discount rates to prevail in the future. In addition, the future state of the
economy is correlated with dividend growth. Therefore, changes in prices should also
factor in the covariance between dividend growth and changes in the state of the economy,
, dD;

cov, (5t dy)).

Condition a.2 in Proposition 1a formalizes the intuition that the price—dividend ratio in
Eq. (17) is affected by the risk-neutral expectation of the state and the covariance between
dividend growth and changes in the state. Recall the definition of .7(y) in Condition a.2,

d* _ d .
o (y) = —mi(y) — 2— Disc(y). (18)
dy? dy

k 1 ~
Yo = y} ; % = e(go—jﬂ(z))f-*-ﬂo Wi (17)

By definition, #2(y,) is the sum of the risk-adjusted expectation of the instantaneous
changes in y,, %[E,(yr)h:, and the covariance covt(‘%’, dy,) [see Eq. (13)]. Thus, m(y)
summarizes the expectation about changes in the state of the economy and the co-
movements of the state with dividend growth. The function 7(y) can also be interpreted as
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Fig. 2. Expected changes in the state of the economy. In this picture, y is a state variable tracking the state of the
economy. The left-hand panel (Case a) depicts the drift function ri(y,) = %[E,(yf)lxz, that makes the volatility of
the expected changes in y more volatile in bad times than in good times (solid line). The expectation [ is taken
under the probability 0 in Eq. (19). The dashed line depicts one example of the expectation %E,(yr)\,:, taken
under the physical probability. The right-hand panel (Case b) depicts the drift function m(y,) that makes the
volatility of the expected changes in y as volatile in good as in bad times.

follows. Rewrite the expectation in Eq. (17) as

e} .
P(y) _ [E |:/ egotfﬁ) Disc(y,,) du dr
0

Yo Zy}, (19)

where [[-] is the conditional expectation taken under a new probability O defined by the
Radon-Nikodym derivative dQ/dQ = exp(—} a3t + oo W1,) [see Eq. (51) in the appendix
for the derivation]. Eq. (19) is still a present value formula, in which a fictitious
deterministic dividend growth e%’ is discounted using the risk-adjusted rates Disc(y), under
0. Compared with the density of y under Q, the density of y under Q is right-shifted to
reflect the positive covariance cov,(dD—D/’, dy,). Then, m(y) is the drift of y under Q, and

Condition a.2 is satisfied if 7(y) is sufficiently concave, i.e. S—yzzn'q(y)<2d% Disc(y) <0, where

the last inequality follows by the proposition’s assumption that the risk-adjusted discount
rates are countercyclical.

What does this concavity mean economically? Fig. 2 illustrates it. In Case a, the expected
changes in y, are more volatile in bad times; in Case b, the expected changes in y, are
volatile in both bad and good times. In both cases, the investors’ expectation about their
own future discount rates fluctuates more in bad times than in good times.* These

“This statement is formally shown in the appendix (see Corollary 1). Intuitively, we have that, in Case a, the
volatile expectations of y, in bad times translate to volatile expectations of future discount rates. In contrast, in
Case b, the volatile expectations of y, in good times do not translate to volatile expectations of future discount
rates. This is because, in good times, investors expect declining rates of growth in the expansion state variable y,
(see Fig. 2, Case b). Hence, they do not expect their discount rates to fall significantly in the future.



456 A. Mele | Journal of Financial Economics 86 (2007) 446478

asymmetric expectation shifts amplify the asymmetric fluctuations of the current discount
rates induced by Condition a.l. Therefore, they accentuate the asymmetric behavior of the
price—dividend ratio, and contribute to countercyclical variation in the price-induced
components of volatility in Definition 1.

These expectation asymmetries take place under the probability O in Eq. (19). Thus,
they could arise for at least two reasons: (1) the expectation of the future state of the
economy under the physical probability is inherently asymmetric; and/or (2) investors are
risk-averse. To isolate the effects associated with risk-aversion, consider the extreme
situation in which the expectation of the future state of the economy is not asymmetric at
all, as in Case a of Fig. 2 (the dashed line). To make the same expectation asymmetric
under the probability O (the solid line in Fig. 2, Case a), investors should require a risk-
aversion correction that is more pronounced in bad times than in good. In other words,
Condition a.2 imposes that the risk-aversion correction be sufficiently asymmetric to
generate the drift distortion in Fig. 2. In turn, this distortion alters the strength of mean-
reversion of y, in bad times. It makes bad times more persistent than good times under the
risk-neutral probability, thereby implying a slow decay rate for the price of Arrow—Debreu
securities paying off in future bad states.

Finally, Part (b) of Proposition 1 deals with the extreme situation in which the dis-
count rates are large (or change quite asymmetrically) in bad times. Intuitively, this part
of the proposition follows from Eq. (17). If bad times worsen, the proposition’s condi-
tions imply that investors raise their discount rates to the extent that the price—dividend
ratio collapses to very low values. As a result, the price-elasticity E,(y,) and sensitivity
Sy(y,) increase in bad times. Section 3 shows that such an extreme asymmetry in
discounting can occur in economies with external habit formation or restricted stock
market participation.

3. Examples

Proposition 1 provides general insights into the cyclical determinants of stock return
volatility. These same insights can be used to interpret the empirical success or failure of
previous existing models of aggregate stock market fluctuations. In Sections 3.1 and 3.2, I
use Proposition 1 to analyze and compare economies with external habit formation and
economies with restricted stock market participation. In Section 3.3, I produce a
calibration experiment to illustrate the quantitative content of the theory developed in this

paper.
3.1. External habit formation

Example 1 contains a well known model that can be analyzed with the tools introduced
in this paper.

Example 1 (Campbell and Cochrane, 1999). Consider an infinite horizon economy in
which a representative agent has discounted utility e "u(c, x) = e“”llfn[(c — )" =1,
where p is the subjective discount rate, ¢ is consumption, and x is the habit stock. Let
v, = (¢, — x;)/c; be the surplus consumption ratio. By assumption, y, is the solution to

dy, = y/[x(7 —logy,) + %oél(yl)z]dt + o0y (y)dW,, (20)
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where k>0,7 € R, I(y) = 4/1+2(7 —logy) — 1,y € (0, ¥ - e‘/z”_’_’z)), and Y = exp(y) =
ao+/1/k. In equilibrium, ¢, = D, for all ¢, the interest rate R is constant, and the unit risk
premia are A,(y) = 0 and 2;(y) = noo[l + [(¥)].

Campbell and Cochrane identify the habit formation mechanics that lead to pricing
kernel properties in line with empirical facts. The message of their model, however, is far
more general. For example, Guvenen (2005) shows that models with restricted stock
market participation have a reduced form, which is similar to the habit formation model of
Campbell and Cochrane. (See, also, the similarities in Section 3.2 below.)

In the Campbell and Cochrane economy, return volatility is such that Voly(y,) = 0 and
Vol(y,) = Voli(y,), where, by Eq. (8),

Vol(y,) = ao[1 + E,,(yt)y,l(y,)], (21)

and E,(y,) is the price-elasticity introduced in Definition 1. Campbell and Cochrane
demonstrate numerically that, in a discrete time version of Example 1, the return volatility
in Eq. (21) is decreasing in the surplus consumption ratio, y,. There are two reasons for this
result.

First, in the empirically relevant range of variation, the volatility of the fundamentals,
o0y,(y,), is decreasing in y,. Second, the price—dividend ratio collapses to zero as the
surplus consumption ratio goes to zero. The second effect arises through the channel
identified by Proposition 1b. In the Campbell and Cochrane economy, the discount rates
Disc(y,) react asymmetrically to changes in y,. In particular, they become large and
infinitely convex as the surplus ratio gets smaller (two properties labeled “large
discounting” and “large asymmetry in discounting” in Proposition 1b). Therefore, even
if the volatility of fundamentals ¢y,/(y,) approaches zero as the surplus ratio approaches
zero, the extremely high discounting in bad times makes the price—dividend ratio very
small, thereby inducing the price-sensitivity S,(y,) and the price-elasticity E,(y,) to blow
up.® As a result, the return volatility, Vol(y,), is such that Vol(y,) >0y for small values
of y,.°

Do habit models always predict that price—dividend ratios change asymmetrically in
response to variations of the surplus consumption ratio? Consider Example 2.

Example 2. Assume that, in the habit formation economy of Example 1, the representative
agent has instantaneous utility wu(c;, x;) = l%ﬂ[(c, —x,)!7" = 1] but that the surplus

v

consumption ratio y, = (¢, — x;)/¢; is such that G, = y;’ is the solution to

dG, = k(G — G,)dt — a(G; — D)ag dWy,, (22)
for some positive constants k, G, o, and L.

SAs the surplus ratio », approaches zero, the surplus volatility agy,/(y,) also approaches zero. This condition
guarantees that y, remains positive, a requirement consistent with the preferences specification underlying the
habit formation mechanics.

SWachter (2005) uses new numerical methods and shows in detail the concavity property that emerges by
Proposition 1b. It is also possible to show that, with the parameter values used by Campbell and Cochrane,
Condition a.2 in Proposition la is not satisfied, although the same condition is satisfied with different parameter
values.
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Table 1
The price—dividend ratio and surplus consumption for the economy in Example 2

This table summarizes qualitative properties of the continuous-time economy in Example 2. In this economy, a
representative agent has habit formation preferences, with instantaneous utility u(c, x) = (¢ — x)", where 7 is the

local curvature of the instantaneous utility, ¢ is consumption, x is the habit stock, and G, = y,”’ is solution to

dG, = k(G — G))dt — (G, — Do d W,

where W, is a Brownian motion, y, = “—* is the surplus consumption ratio, oy is consumption growth volatility,

&3

and y,k, G, and « are additional preference parameters related to the habit formation process. The properties in
this table hold for y = 1. They are obtained by applying the test conditions in Proposition la. The first column
displays parameter restrictions. The second column lists qualitative features of the price—dividend ratio
corresponding to the restrictions in the first column. The third column reports when the price-induced component
of both return volatility and the price—dividend ratio volatility is asymmetric.

Parameter restriction Price—dividend ratio Price-induced asymmetric volatility
n€(0,1) and kG>alod(o+n — 1) Increasing and concave in y Yes
n=1 Increasing and linear in y No
n>1 and Increasing and convex in y No

kG>oalod max{o+n — 1,(1 + o) — 1)}

Example 2 generalizes two models in the literature: one, developed by Menzly, Santos,
and Veronesi (MSV, 2004), in which the authors set y =# =1 (see also Buraschi and
Jiltsov, 2006); the other, proposed by Santos and Veronesi (2006), in which y = 5. These
parameter restrictions lead to closed-form solutions for the price—dividend ratio. For
example, in the MSV economy, the price—dividend ratio for the aggregate consumption
claim is linear in y. A natural question is: What happens in this economy if the preference
parameters are such that y = 1 (as in MSV), but the local utility curvature 5 is different
from one? The answer can be obtained by applying the test conditions in Proposition la. It
is summarized in Table 1.

The economic intuition behind the restrictions in Table 1 stems from the asymmetric
behavior of the risk-adjusted discount rates Disc(y,) = R(y,) + do41(y,). In this economy,
the interest rate R(y) and the unit risk premia are such that 1,(y) = 0, and

21(y) =naoll + (1 —ly)];  and (23)

R() = p +ngo — Sagn(n + 1) + nk(1 — Gy) — n*afe1 — Iy) — in(1 — y)*o*ag(n — 1).
(24)

While the risk premium 4;(y) is always decreasing and linear in the surplus consumption y,,
the asymmetric behavior of the discount rates Disc(y) is affected by the local utility
curvature 7.

If n =1, the discount rates Disc(y) are decreasing and linear in y, i.e., they react
symmetrically to changes in y,. As a result, the price—dividend ratio is also increasing and
linear in y,. This property implies that the price-sensitivity S,(y,) = p'(y,) is constant and

that the price-elasticity E,(y,) =’1’; éy;)) is countercyclical, with the countercyclical effect
arising through the denominator. In other words, the price-sensitivity S,(y,) is not
countercyclical and so the price-induced component of the price—dividend ratio volatility is

symmetric.
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When is the price-sensitivity countercyclical? Proposition 1 identifies a precise condition:
Either the discount rates or the risk-adjusted expectation about the future state of the
economy, or both, must behave asymmetrically over some range of y,. In this economy, the
discount rates Disc(y) have the desired property if n € (0, 1). This result follows because of
the last term in the expression for the interest rate R in Eq. (24). This term reflects
precautionary motives that become less important as the utility curvature parameter g
decreases. Precisely, if # is less than one, the interest rate is decreasing and convex in the
surplus ratio, i.e., it fluctuates more in bad times than in good. According to the expla-
nations given in the Introduction (see Fig. 1), this asymmetry translates to countercyclical
variation in the price-sensitivity, under the additional condition in Table 1 reflecting
Condition a.2 in Proposition la. This is the prediction in the first row of Table 1.

The last row in Table 1 can be interpreted similarly: If the utility curvature parameter n
is greater than one, the interest rate is decreasing and concave in y. This precautionary-
induced asymmetry now makes the interest rate fluctuate more in good times than in bad,
thereby leading to a procyclical variation in the price-sensitivity. Therefore, this model
might or might not generate countercyclical variation in the price-sensitivity. According to
Proposition 1a, this property crucially depends on the magnitude of the utility curvature 7.

3.2. Restricted stock market participation

Countercyclical stock volatility could also arise in economies without habit formation.
Consider the Basak and Cuoco (1998) model of restricted stock market participation. In
this model, there are two agents. The first agent invests in the stock market and has an
instantaneous utility function with constant relative risk-aversion equal to 5. The second
agent is prevented from investing in the stock market and has logarithmic preferences over
consumption. The two agents have the same subjective discount rate p.

The marginal rate of substitution of the stock market participant is tied down to the
pricing-kernel in Eq. (4) by the following relation:

i\ "
(&) "= e 25)
Cpo
where ¢, is his optimal consumption. The marginal utility of the agent not participating in
t
the stock market is (ﬁ”—’(’))_] =e"’efﬁ)R‘Y 4 where ¢y 1s his optimal consumption. By
n,

expanding the left- and right-hand sides of Eq. (25), by identifying terms, and by using the
market clearing condition ¢,, = D, — ¢,,, one finds that A>(y) = 0 and

, de 1
m(y,)=11-V01< ,p’t>=n~60—, (26)
Cp,t Vi
where y, = % is the market participant’s consumption share and Vol(%) = oo}%’ is the
instantaneous standard deviation of the market participant’s consumption growth in
equilibrium.

Intuitively, in this economy the stock market participant (i.e., the marginal investor) is
bearing the entire macroeconomic risk. The risk premium he requires to invest in the stock
market is large when his consumption share y, is small. Moreover, the risk-adjusted
discount rates Disc(y,) = R(y,) + go41(y,) could display a similar property. By Basak and
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Cuoco (1998, Corollary 1, p. 323),

190

n—@m—1y, @)

1 2

2 M0+ D% = D7’
A simple computation reveals that, if 5> 1, the discount rates Disc(y) are convex in y and
lim,_,¢Disc(y) = 0o, as in the Campbell and Cochrane habit formation economy of
Example 1. In this economy with restricted stock market participation, the investor’s
evaluation of future cash flows is quite asymmetric. According to Proposition 1b, this
asymmetry makes the price—dividend ratio fluctuate more on the downside, thereby
producing asymmetric return volatility. Thus, both the Campbell and Cochrane (1999)
economy and the Basak and Cuoco (1998) economy have an interesting property that helps
illustrate the point of this paper: Countercyclical return volatility is induced by a
pronounced asymmetry in the investors’ attitude to discounting future cash flows.

Ry)=p+

3.3. Quantitative implications

I perform a calibration experiment to illustrate the quantitative implications of the
theory. Table 2 displays the empirical benchmark for the calibration, based on a sample of
660 monthly observations from January 1948 through December 2002. The table reports
the average and standard deviation for the price—dividend ratio on the Standard & Poor’s

(S&P) Composite index (P/D henceforth), the monthly changes P/D,; — P/D,, the

percentage changes of the P/D, defined as log(P]/,l/)]’Dfl), the continuously compounded (real)

returns, the riskless interest rate (the real one-month Treasury bill rate), and the excess
return volatility.” I compute the excess return volatility as of month ¢ through the Officer

(1973) moving standard deviation estimator, 6, = %Zﬁl |Exc;.1-;|, where Exc, are the
excess returns at month ¢. Then, I convert this volatility measure into Vol, = \/%/ 126;.

The /12 factor is used to annualize 6,; the \/g factor was suggested by Schwert (1989b,
p. 1118) to correct a bias related to estimating the standard deviation through the absolute
value of the excess returns.

Table 2 also reports descriptive statistics for the previous variables during National
Bureau of Economic Research (NBER)- dated expansions and recessions. Return volatility
is clearly countercyclical, as is the volatility of the P/D changes. For example, the excess
return volatility is 0.14 on average (annualized). It increases by 22% during recessions and
decreases by 4% during expansions. The P/D is procyclical but moves asymmetrically over
the business cycle. According to the statistics in Table 2, the P/D is 32 on average, increases
by 4% during expansions, and decreases by 18% during recessions. The volatility of the P/
D changes is also asymmetric. It is 4.48 on average, increases by 26% during recessions,
and decreases by 7% during expansions. Finally, the absolute value of the average of both
the P/D changes and the P/D percentage changes is nearly twice as severe during recessions
than expansions.

"The data on the P/D ratio are obtained from Robert Shiller’s website. The remaining data are from the Center
for Research in Security Prices database, with the exception of the seasonally adjusted Industrial Production,
obtained from the FRED® database. Real returns and interest rates are obtained by deflating their nominal
counterparts with the consumer price index.
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Table 2
Business cycle properties of the price-dividend (P/D) ratio and returns

P/D is the Standard & Poor’s (S&P) Composite price-dividend ratio. Real returns R, are the log-returns on the
S&P deflated by the consumer price index. Twelve month returns as of month 7 are defined as Z;Zl R,_;. Excess

returns are returns in excess of the real (one month) risk-free rate and are computed similarly. Volatility is the

excess return volatility, computed as Vol = \/—le % where Exc;, is the return in excess of the one-month

bill return as of month 7. Data are sampled monthly and cover the period from January 1948 through December
2002. All figures are annualized percent, with the exception of the P/D ratio levels and the changes
P/D,.1 — P/D,, which are only annualized. NBER: National Bureau of Economic Research.

Variables Total NBER expansions NBER recessions
Average Standard Average Standard Average Standard
deviation deviation deviation
P/D 31.99 15.88 33.21 15.79 26.20 14.89
P/D,1 — P/D, 0.66 4.48 1.33 4.17 —2.54 5.64
log% 2.01 12.13 3.95 10.81 —7.28 16.79
t
Real returns 8.22 14.94 9.70 13.82 1.17 19.28
Twelve month returns 8.59 15.86 12.41 13.04 —-9.45 15.49
Real risk-free rate 1.02 2.48 1.03 2.43 0.97 2.69
Excess return volatility 14.18 4.86 13.50 4.49 17.38 5.18

The main point of this paper is that these properties can be explained by the asymmetric
behavior of the risk premia over the business cycle. To provide empirical evidence in
support of this theoretical finding, I use the Fama and French (1989) measurement
procedure for estimating expected returns. I regress S&P returns (deflated by the consumer
price index) on to the default-premium (Baa yield minus ten-year government bond yield),
the term-premium (ten-year government bond yield minus three-month Treasury bill

yield), and the return volatility Va,. The estimate of the expected returns at time ¢, (;@, say,
is the fitted value at time ¢ of this regression. Finally, I define one-year moving averages of
the industrial production growth as IP, = ﬁ IndHl ;» where Ind, is the real,
seasonally adjusted industrial production growth as of month z.

The left-hand side of Fig. 3 plots the estimated expected returns &, against the industrial
production growth IP,. The right-hand side displays the fitted values of the least absolute
deviations regression,

&, =8.56—4.051P, + 1 18 IP? +wy, (28)
0.15)  (0.30)
where wy, is a residual term and robust standard errors are in parenthesis.® The evidence
from Fig. 3 is striking. In good times, expected returns (a reasonable proxy for risk premia)
do not vary much. In bad times, however, their fluctuations are more pronounced.

3.3.1. The benchmark economy
I now illustrate how the theory of this paper helps explain these large swings in the
expected returns and return volatility. I use the habit formation economy in Example 2 to

81 run a least absolute deviations regression because this methodology is known to be more robust to the
presence of outliers than ordinary least squares (see, e.g., Bloomfield and Steiger, 1983).



462 A. Mele | Journal of Financial Economics 86 (2007) 446478

Expected returns and industrial production Predictive regression
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Fig. 3. Expected returns and business cycle conditions. The left-hand side of this picture plots estimates of the

expected returns (annualized, percent) (é"’, say) against one-year moving averages of the industrial production
growth (IP,). The expected returns are estimated through the predictive regression of Standard & Poor’s returns
on to default-premium, term-premium, and return volatility defined as V&, = \/gzzl 'EXC’—\/ILZI*"', where Exc; is the
return in excess of the one-month bill return as of month 7. The one-year moving average of the industrial
production growth is computed as IP;, = ﬁ }il Ind,;;_;, where Ind, is the real, seasonally adjusted industrial
production growth as of month z. The right-hand side of this picture depicts the prediction of the static least

absolute deviations regression: (;”, = ?01556) 731(3)(% P, + (10311% -IPf + w,, where w, is a residual term, and standard

errors are in parenthesis. Data are sampled monthly and span the period from January 1948 to December 2002.

implement a calibration experiment. I specialize this economy to the case analyzed by
Santos and Veronesi (2006), in which y = 5. In this economy, the interest rate R(y) and the
prices of risk are such that 1,(y) = 0, and

R(y) = p+ngo —Sognin+ 1)+ k(1 — Gy") — nuog(1 — 1y'"), and
(y) = ooln + (1 = Iy")]. 29)

If n<1, the risk-adjusted discount rates Disc(y) = R(y) + go41(y) increase more in bad
times than they decrease in good times, i.c., they are decreasing and convex in the surplus
ratio y.” Moreover, the sensitivity of the discount rates to changes in y, can get arbitrarily
large in bad times. Formally, if n <1, then lim,_, (f—yDisc(y) = 00, a property labeled ““large
asymmetry in discounting’ in Proposition 1b.

According to Proposition 1, the previous properties translate to countercyclical
movements in the price-elasticity and the price-sensitivity. This is confirmed analytically.

Intuitively, 4, is always decreasing and convex. Moreover, low values of the utility curvature  make R
fluctuate more in bad times than in good, because of (weak) intertemporal substitution effects (the fourth term in
the expression for R). At the same time, low values of n mitigate the precautionary effects (the last term in the
expression for R).
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The solution for the price—dividend ratio is

p(y) = b1+ byy", (30)

where b; and b, are two positive constants. That is, provided # <1, the price—dividend ratio
is concave in y and so the price-elasticity and the price-sensitivity are both countercyclical.

3.3.2. Calibration

I simulate the model discussed in Section 3.3.1 with one hundred samples of 50 years. I
choose the model’s parameters so as to match its key unconditional population moments to
the empirical counterparts in Table 2. These moments are the mean of the S&P Composite
price—dividend ratio, the standard deviation of the price—dividend ratio changes and log-
changes, and, finally, the mean and standard deviation of the continuously compounded
returns and the risk-free rate. Table 3 reports the parameter values along with the calibration
results. To generate countercyclical variation in the price-sensitivity, the utility curvature
parameter # must be less than one, as discussed in Section 3.3.1. T use n = % With the
exception of this parameter, all parameter values are comparable with those in Santos and
Veronesi (2006). The results in Table 3 show that the model generates figures for the average
risky returns, the return volatility, and the mean and standard deviation of the risk-free rate,
which are all very close to their empirical counterparts. Moreover, it successfully explains the
level of the price—dividend ratio, along with the volatility of its changes.

Next, I look at the conditional moments implications of the model. I proceed as follows.
First, I compute the certainty equivalent for the price—dividend ratio, defined as
¥y :p(@) = E[p(»,)], where E[-] denotes the unconditional expectation operator. I define
the ““average states” of the economy as the states for which the surplus consumption ratio
Vi €ly_,yi]l, where y_ =y F %StdQ}) and Std(y) is the unconditional standard deviation of
y,. I find that = 1.97% and Std(y) = 0.59%. Next, I define the “good states” as those in
which y, € [y,,y, + 4], where 4 = 0.50%. Finally, I define three levels of bad states. The
less severe bad states occur when y, € [y, — A4, y,} (bad states B1); the intermediate bad
states occur when y, € [y_ — 24,y_ — 4] (bad states B2); the most severe bad states occur
when y, € [y_ —34,y_ — 24] (bad states B3).

Table 4 displays the key conditional population moments of the model. The oscillations
of the price—dividend ratio from good states to bad are asymmetric and mimic the swings
in the data. The model predicts that, as the price—dividend ratio moves away from the
average states, it increases by 8% in the good states and decreases by 13% in the bad states
B1. In particular, the price-sensitivity S,(y,) increases by 18% in the bad states Bl and
decreases by 8% in the good states. This asymmetry becomes more pronounced in the
more severe states B2 and B3. Eventually, the price-sensitivity blows up as the surplus
consumption ratio gets small. Intuitively, in this economy the representative agent modifies
his discount rates dramatically as bad times deteriorate (the large asymmetry in
discounting property discussed in Section 3.3.1), thereby inducing the price-sensitivity to
change dramatically as well [Eq. (62) in the appendix formalizes this intuition].

The asymmetric behavior of the price-elasticity E,(y,) is even more pronounced. This
property accounts for the large movements in the expected returns shown in Table 4. This
is because a large price-elasticity translates to a high price—dividend beta and so to large
expected returns in Eq. (7). Finally, the model generates countercyclical return volatility,
along with countercyclical variation in the volatility of the price—dividend ratio changes.
The results in Table 4 reveal that the asymmetric movements in the price-sensitivity are



Table 3
Parameter values and basic calibration results for the model in Example 2

This table reports the basic calibration results for the infinite horizon, continuous-time economy in Example 2. Panel A has annualized parameter values used to
match the basic moments of data reported in Panel B. The parameters g, and ¢y are the instantaneous average and standard deviation of consumption growth,
respectively. The remaining parameters affect the preferences of a representative agent with habit formation: p is the subjective discount rate, and 7 is the local
curvature of the instantaneous utility u(c, x) = (¢ — x)", where ¢ is consumption, x is the habit stock, and G, = y;” is solution to

dG, = k(G — G dt — (G, — Doy d W,

Cr—Xy
c

where Wy, is a Brownian motion and y, = » is the surplus consumption ratio. In this calibration experiment, y is set equal to x. Panel B has calibration results for

the average Standard & Poor’s (S&P) Composite price—dividend ratio, P/D; the standard deviation of the P/D changes, Std(P/D,;; — P/D;); the standard deviation

of the log-P/D changes, Std(log P]/)]/)]’)t'); the average real log-returns on the S&P (deflated by the consumer price index), E(R); the standard deviation of returns,

Std(R); the average real (one-month) risk-free rate £(/); and the standard deviation of the risk-free rate, Std(+). All figures in Panel B are annualized percent, with
the exception of the P/D ratio levels, and the changes P/D,;; — P/D,, which are only annualized.

Panel A. Consumption and preference parameters
Jdo ) n o G k / o

0.020 0.015 0.045 8.36 0.16 6.01 73.85

1
2

Panel B. Moments of historical data and moments implied by the model

Sample data E(P/D) Std(P/D;;; — P/D,) Std(log "{,?g‘ ) E(R) Std(R) E@G) Std(#)
t
Historical data 31.99 4.48 12.13 8.22 14.94 1.02 2.48

Model 32.27 3.75 13.45 7.27 14.95 2.08 3.51

Yor
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Table 4
Conditional moments implied by the calibrated model in Example 2

Consumption and preference parameters are fixed at the values in Table 3, Panel A. The P/D sensitivity is the
sensitivity of the price—dividend (P/D) ratio to changes in the surplus consumption ratio y and is computed as

P'(»), where p is the P/D ratio. The P/D elasticity is the elasticity of the P/D ratio to changes in y, computed as ‘%
The P/D volatility is the volatility of the instantaneous changes in the P/D ratio, computed as p'(y)v(y), where v(y)
is the instantaneous volatility of y. The log-P/D volatility is the volatility of the instantaneous changes in the log-
%
adjusted rates are the discount rates adjusted for cash flow risk. The table reports expectations conditional on the
surplus ratio y belonging to pre-specified states. For each variable, its expectation in the average states is the
expectation conditional on y belonging to the interval [y_,y,], where y_ =3 :F%Std(y); Std(y) is the standard
deviation of y (with Std(y) = 0.59 - 1072); and J is the certainty equivalent for the P/D ratio, defined as j :
p(P) = E[p(y,)] (with ) =1.97- 1072). For each variable, the expectation in the good states is the expectation
conditional on y belonging to [y,,y, + 4], where 4 = 0.50 - 1072, Finally, the expectation in the bad states Bl,
B2, and B3 is the expectation conditional on y belonging to [y_ — n4,y_ — (n — 1)4], for n = 1 (the bad states B1),
n = 2 (the bad states B2), and n = 3 (the bad states B3), respectively. The figures for the log-P/D volatility, return
volatility, risk-adjusted rates, and expected returns are annualized percent.

P/D, computed as v(y). Surplus volatility is the instantaneous volatility of the surplus ratio, v(y). The risk-

Variables Good states Average states Bad states

Bl B2 B3
P/D 35.52 32.62 28.29 23.81 17.58
P/D sensitivity 618.18 675.56 796.52 976.03 1450.21
P/D elasticity 17.33 20.46 27.72 40.15 81.52
P/D volatility 1.72 4.02 6.89 8.48 8.57
log-P/D volatility 4.86 12.27 24.02 34.96 47.06
Surplus volatility 2.81 x 1073 597 x 1073 8.66 x 1073 8.68 x 1073 5.87 x 1073
Return volatility 6.36 13.79 25.52 36.52 48.80
Risk-adjusted rates 0.53 2.61 5.68 8.87 13.31
Expected returns 1.36 6.81 16.76 31.73 49.61

quantitatively responsible for the bulk of variation in the volatility of the price—dividend
ratio changes. To summarize, in this economy the discount rates react asymmetrically to
changes in economic conditions. Furthermore, this asymmetry becomes more pronounced
as bad times worsen. Importantly, the calibration exercise reveals that the theoretical issues
this paper associates with such asymmetries can have substantial quantitative implications
on the dynamics of expected returns and volatility.

4. Economies with fluctuating uncertainty

How do the restrictions in this paper work in a world with fluctuating economic uncertainty? I
now analyze economies in which consumption growth is surrounded by varying uncertainty.

4.1. The dynamics of fundamentals and asset prices

I consider an economy in which expected consumption growth and consumption
volatility are both time-varying,
dD,

— =x,dt +op(s)dWy,, (31)
D,
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where D, is the consumption endowment, x; is the expected consumption growth, and s, is a
state variable affecting consumption volatility o p(s;), for some positive function op increasing
in s;. Both expected consumption growth and consumption volatility are predictable:

dx; = p(¥ — x,)dt + o, d W,
ds; = x(5 — s,) dt + o5(s1, q,) AW 3,
dLIt = ﬁ(q - %)) dr + O'q(qz) dWay, (32)

for some additional Brownian motions W,, W3, and W4; some positive constants y, X, gy, K, 3,
B, and g; and some functions o, and ¢, which are assumed to be increasing in their arguments.

These assumptions about consumption volatility are the continuous-time counterpart to
Tauchen (2005). Tauchen’s assumptions about volatility extend upon those in Bansal and
Yaron (2004) because the function ag,(s;,¢q,) could depend on s; and some additional
volatility of volatility state variable ¢,. In turn, the previous model is a slight generalization
of Tauchen’s as it includes variation in the expected consumption growth x,. However, the
expected growth x; does not play any role in the analysis below.

As in Section 2, I assume that the interest rate and risk premia are independent of the
level of aggregate consumption D,. Therefore, the pricing kernel ¢, is the solution to

déi
?f = —R(y)dt — My,)dW,, >

where y, = [x;, 5, q,]T, W=[W,,..., W4]T, and, finally, A = [Ap, Ax, Ay, 4¢] is the vector of
unit prices of risk. These assumptions imply that the price—dividend ratio %; = p(y,), for
some function p. I assume that R and A are twice continuously differentiable and that the
price—dividend ratio p satisfies the same regularity conditions as in Section 2. To keep the
presentation simple, I also assume that every unit price of risk 4; depends only on the
variables that affect the volatility of the state variable i (i = D, x, s, q), i.e., Ap = Ap(s),
e = An(X), Ay = (s, q) and 1, = J,(9)."°
Which conditions should the pricing kernel satisfy to make returns inversely related to
the volatility of fundamentals s, and the volatility of volatility ¢,? By the definition of asset
returns,
Returns, = dp%l)’d’ — &(y,)dt + Vol(y,) dW,, (34)
t
where Vol =[Volj,...,Voly], Vol =agp, Vol :%ai (i =x,s,q), subscripts on the
price—dividend ratio p denote partial derivatives (for example, p, = W), and, finally,
the expected returns in Eq. (34) are obtained similarly as in Eq. (7) in Section 2. They are

E(y) = R(y) + op(s)in(s)+ Y Voliy)iu(y)- (35)

i=X,5,4

=Disc(y,)
By Eqgs. (32) and (34),

2:(y,)
p(yt)

E,(Returns, - d¢;) = a,~(y,)2 dt, ¢, =s 01 q,. (36)

1The interest rate and the risk premia in Eq. (33) do not depend on some additional index tracking the state of
the economy [such as that in Eq. (3)]. Adding this would lead to the same analysis as in Section 2, without
affecting the results in this section.
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Thus, ex post returns co-move negatively with the volatility factors s, and ¢, if the
price—dividend ratio p decreases with s, and ¢,, i.e., p;<0 and p,<0. Proposition 2
develops conditions under which such inverse relations do occur.

Proposition 2. Let the endowment process be as in Eq. (31) and suppose that the risk-adjusted
discount rates in Eq. (35) are increasing in the volatility of fundamentals s, i.e., %Disc(y)>0.
The following statements hold true under the assumptions in this section

(a) The price—dividend ratio reacts negatively to changes in the volatility of fundamentals s,
ie, p(y)<0. Hence, the asset returns in Eq. (34) and s, are negatively correlated.
(b) Assume that the volatility risk premia are negative and increasing in q, i.e., Ay(s, q) <0 and

%{7”‘1)>0 and that one of the two following conditions holds true:

(b.1) The discount rates are increasing in the volatility of volatility q, i.e. %Disc(y)>0.
In addition, (1) the volatility of fundamentals s € (s, 3), for two positive constants s
and §, and (i1) the price— dividend ratio reacts asymmetrically to changes in s, i.e., it
is concave zn s. )

(b.2) — aD'SC /a‘q“‘)ps + %aaa‘; Dss <0 (Large negative volatility risk premia).

Then, the price—dividend ratio is decreasing in the volatility of volatility q, i.e., p,(y)<O0.

Hence, the asset returns in Eq. (34) and q, are negatively correlated.

Conversely, suppose that the price—dividend ratio is decreasing in the wvolatility of
Sfundamentals s (respectively, the volatility of volatility q). Then, the discount rates Disc(y)
must be increasing in s (respectively, Condition b.2 must hold) on some sets of 'y having
strictly positive probability.

As in Sections 2 and 3, the discount rates Disc(y,) in Eq. (35) play a critical role.
Consider Part (a) of Proposition 2. It relies on the assumption that, after a positive shock
to the volatility of fundamentals s,, investors raise the discount rates they use to evaluate
future dividends. Under this condition, an increase in the volatility of fundamentals lowers
the price—dividend ratio and induces a negative relation between asset returns and the
volatility of fundamentals.

Part (b) of Proposition 2 relates asset returns to higher order properties of the economic
fundamentals. When is the price—dividend ratio inversely related to the volatility of
volatility ¢,? First, volatility risk should be negatively priced, i.e., 4,<0. Intuitively, if
prices are negatively affected by volatility, a negative volatility risk premium is required to
make Arrow—Debreu state prices high in the poor states of the world (i.e., when volatility is
high). Second, the volatility risk premia should increase with the volatility of volatility ¢,
1e., %(—)vsax)>0. In other words, following a positive shock to ¢,, the compensation for

volatility fluctuations should increase, thus lowering the asset price and returns. These two
basic conditions are not sufficient to make the price—dividend ratio decreasing in ¢,.
Proposition 2 identifies two additional sets of conditions.

1. Condition b.1 is a sufficient condition. It requires that the discount rates Disc(y,) be
increasing in ¢, and that the price-dividend ratio be decreasing and concave in the
volatility of fundamentals s;. Intuitively, the concavity property means that the
price—dividend ratio dampens low realizations of s, and exaggerates higher realizations
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of s;. As a result, a positive spread in the uncertainty surrounding the volatility s, (i.e.,
an increase in the volatility of the volatility ¢,) lowers the price—dividend ratio, a
conclusion consistent with second-order stochastic dominance. In turn, the proof of
Proposition 2 reveals that the following conditions guarantee that the price—dividend
ratio is concave in s:

2

% Disc(y)>0 (Asymmetric discount rates) (37)
and
: )
—a2 [As(s, @)as(s, ¢)]> 2& Disc(y) (Asymmetric volatility risk premium).  (38)

These conditions require that the discount rates Disc(y,) and the volatility risk premia
—2s(81,4,)05(s, q,) increase more in bad times (when the volatility s, is high) than they
decrease in good times (when the volatility s, is low). Similarly as in Sections 2 and 3,
this kind of asymmetry implies that the price—dividend ratio p fluctuates more in bad
times than in good, i.e., it is decreasing and concave with respect to s.

2. Condition b.2 holds under Condition b.1, but the converse is clearly not true.
Moreover, the last part of Proposition 2 states that the necessary condition for the
price—dividend ratio to be decreasing in ¢ is that Condition b.2 holds on some sets of y
having positive probability. In particular, Condition b.2 is satisfied if the volatility risk
premia are sufficiently responsive to changes in ¢, (i.e., if the sensitivity —8s0y) g
sufficiently large). Section 4.2 provides examples of economies in which volatility risk
premia behave in the manner prescribed by Condition b.2.

Finally, the feedback effect discussed in the Introduction arises if the return volatility
components in Eq. (34) increase after a positive shock in s, and in ¢,. In all the economies I
consider in Section 4.2, this property arises under the same conditions stated in
Proposition 2.

4.2. An application to nonexpected utility

I use Proposition 2 to analyze the economies considered by Bansal and Yaron (2004)
and Tauchen (2005). In these two papers, the primitives satisfy a discrete-time version of
Eqgs. (31) and (32), and a representative investor is endowed with the Epstein and Zin
(1989) and Weil (1989) nonexpected, but recursive utility. Consumption growth satisfies

1
log Dya, — log D, = (Xt - EUD(St)z)Af + op(sierrarV At, (39)

where Ar>0, ¢, is independent and identically distributed as a standard normal variable,
and expected consumption growth x;, consumption volatility s;, and the volatility of
volatility ¢, are the discrete-time counterparts to Eqgs. (32) [see Egs. (69) in the appendix].

4.2.1. The risk-free rate and the risk premia

The asset price P, satisfies the Euler equation &, P, = E/[&; 4(Prya: + D, - At)], where the
pricing kernel &, is defined recursively as &, a, = M a8, (With g = 1) and M, is the
stochastic discount factor. In the Epstein and Zin and Weil environment, the stochastic
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discount factor satisfies

0 D P DAt
log &1y a— log & = log My = —0pAt — — log ~440) 4 (0 — 1) log 2 - 220)
v D, P,
(40)

where 0 = P is the subjective discount rate, # is the relative risk-aversion for static

gambles, and x// is the intertemporal elasticity of substitution (IES, henceforth). In the

standard expected utility framework, 7 = .
In the appendix, I show that in the continuous-time limit, the pricing kernel in Eq. (40)
satisfies Eq. (33), where the interest rate is

1 )\’
R(y,>=p+$xt—§n( ¢>UD(St) -0 Y (a,(y,)’; (yy)) , (1)

i=x,5,q

and the vector of unit-risk premia A = [Ap, A, As, 4q|, With Zp = nop and Z; = (1 — 0)0
(i = x, s, q). Therefore, in this economy, the discount rates in Eq. (35) are

. o1 P\’
Disty) =+ g (1 =g Jonter? 30 -0 3 (aBT) . @

These expressions for the interest rate and the risk premia appear to be new to the
literature. I now use them to check the test conditions in Proposition 2.

4.2.2. Ex post returns and return volatility

I relate ex post returns and return volatility to changes in the volatility of fundamentals
s; and in the volatility of volatility ¢,.

When are prices inversely related to the volatility of fundamentals s,? According to
Proposition 2a, this property arises if the discount rates Disc(y,) are increasing in s;.
Consider, for example, the expected utility case in which n = % and, hence, 0 = 1. Eq. (42)
reveals that, if precautionary motives are not too strong (i.e., if the IES > 1), the investor
raises his discount rates after a positive shock to the volatility s,, thereby inducing an
inverse relation between s, and ex post returns. Moreover, by continuity, the same inverse
relation obtains for a fixed IES i >1 and some values of 7 higher than J."!

To further analyze the case 0 <1, we need to understand how the last term in the right-
hand side of Eq. (42) changes with s,. Consider a log-linear expansion of the
price—dividend ratio such that ¢/ ~ ¢;4;, for three positive constants A4;, i = s, ¢, x. By
substituting this approximation into Eq. (42),

Dise(y,) = p + ¥, + ;17( w)aa(s,) 31 =0) Y Aoy 3)

lﬂ i=X,8,9

The difference 1 — 0 = (1 — —) 'y — —) plays a crucial role in Eq. (43). Let the IES yy > 1
(the case <1 can be dndlyzed in a 31mllar way). If the risk-aversion parameter #> 1, the
last term on the right-hand side of Eq. (43) decreases with the volatility s;.

""The result that p, <0 for 0 = 1 differs from those in Bansal and Yaron and in Tauchen. The difference arises
because to make Eq. (39) consistent with its continuous time counterpart in Eq. (31), I corrected expected
consumption growth for Jensen’s inequality effects through the additional term %O‘D(S,)z.
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What is the economic intuition for this result? From the work of Kreps and Porteus
(1978) and Epstein and Zin (1989), we know that if # > 1, then the investor has a preference
for early resolution of uncertainty. This preference induces him to accelerate his
consumption plan in response to increased uncertainty. In general equilibrium, this fall
in his (planned) expected consumption growth is possible with a fall in the interest rate in
Eq. (41) and hence in the discount rates in Eqgs. (42) and (43). Therefore, to make discount
rates increasing in the volatility s (as required by Proposition 2), the term Zizm,q A?a,(y)2
in Eq. (43) should be relatively insensitive to changes in s. Equivalently, the discount rates
in Eq. (43) are increasing in s, when the volatility risk premium A; = (1 — 0)03% R~
Ay(1 — 0)a, is not too responsive to changes in s.

These properties arise if the volatility of volatility function (s, ¢) is independent of s, as
in Bansal and Yaron (2004) and in the two-factor setting in Tauchen (2005, Section 3).
They also arise in the one-factor model of Tauchen (2005, Section 2), in which ap(s) = /s
and (s, q) = ¢,4/s, provided the positive constant ¢, is not too large.'> Under these
conditions, variation in s also leads to the volatility feedback. This is because by Eq. (34),
the return volatility component related to s is approximately (’% 0, ~ Afa? and is
increasing in s.

How do prices react to changes in the volatility of the volatility ¢,? By Eq. (43), the
preference for early resolution of uncertainty implies that the discount rates are increasing
in ¢, Therefore, Condition b.l in Proposition 2b does not hold. Instead, the

price—dividend ratio is decreasing in ¢, if Condition b.2 holds. In turn, Condition b.2 is
satisfied if the sensitivity of the volatility risk premia with respect to changes in ¢,, —%;S),
is large enough to dwarf the previous uncertainty resolution effects.

Volatility risk premia can have this property in the Tauchen two-factor model, in which
o5(s,q) = /4, 04(q) = b,/q and (s, q) = A(1 — 0),/q. In this model, the sensitivity
%’q"” ~ %(1 — 0)A; and should be large compared with the uncertainty parameter ¢q.13
Proposition 2b predicts that, in this case, ex post returns decrease after a positive shock to
the volatility of the volatility ¢,. Moreover, changes in ¢, raise return volatility as the
volatility component related to ¢ is approximately [%aq)z R Aéag and is increasing in q.
Hence, Proposition 2b predicts that, in this economy, the feedback effect can be induced by
variation in the volatility of volatility. By the previous discussion, this effect arises when
the reaction of the volatility risk premium to changes in g, is large enough to mitigate the
effects of a preference for early resolution of uncertainty.

5. Conclusion

Why is stock market volatility higher in bad times than in good times? One possible
explanation is that the economy is frequently hit by shocks with the same properties as
those ultimately observed in the asset prices. Another possibility is that stock market

"It is easily seen that in the Tauchen’s one-factor model, £ Disc>0 if and only if 1y(1 — i) —11 - 04292 >0,
i.e,, if and only if ¢, is not too large and limd)ﬁoqu&f =0.

3By replacing the expressions for gy, a4, and Z, and the log-linear approximation p; ~ A4;p into Condition b.2, I
find that this condition holds if J(1 — 0)A(21d)121 — 11— 04} + 142 <0, i.c., if the parameter ¢, is not too large and

lim¢q_,0 Aff/)i = 0. Tauchen emphasizes the importance of a similar condition.
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volatility is countercyclical as a result of rational asset evaluation. The explanations
provided in this article rely upon some fundamental facts that underlic rational asset
evaluation. I find that countercyclical return volatility is induced by large swings of risk
premia that occur when the economy moves away from good states. The logic behind this
explanation is intuitive. If asset prices are risk-adjusted, discounted expectations of future
dividends, then these expectations are worse in bad times than in good times. If changes in
these discounted expectations (and, hence, in the risk premia) are also more pronounced in
bad times than in good times, then price volatility is countercyclical.

This channel of asymmetric volatility relies on a framework in which the uncertainty about
the fundamentals of the economy is fixed and countercyclical stock market volatility is induced
by asymmetric movements of the risk premia. But I also analyze economies in which the
fundamentals are surrounded by fluctuating uncertainty, and study if and how the risk premia
for this uncertainty lead return volatility to be higher in bad times than in good.

My results hold for a fairly rich class of dynamic economies. For this reason, they
accomplish two tasks. First, they provide fresh directions into the search process for the
determinants of asymmetric volatility. Second, they highlight new asymmetric volatility
channels that any model should feature to be consistent with rational asset evaluation.
Models that do not activate these channels are likely to fail on one important dimension of
actual stock market fluctuations: the systematic occurrence of countercyclical movements
in return volatility.

Appendix

Notatiozn. For any function f of a single variable x, I let f'(x) = % f(x) and
S"(x) = {5/ (x). Moreover, for any vector a = [a; - - - ay], I let lall>=a + - +d}.
Derivation of Eq. (7). To pin down &(y) in Eq. (7), I develop the pricing equation

0= ¢,D,dt + E,[d(&,P,)], obtaining

E, <7dP, ;[Dt dl) = R(y,)dt — cov, (%,%)
_ B dp, d&\ dp(y,) d¢,
= Rouds C"”(Dt g, ) C"”’(p(m 7, )
=[RO) + Bcr21(v) + Bpp(vy) - Av)]de, (44)

where the second line follows by the definition of the price—dividend ratio p(y,) = %’t, the
third line follows by Eqgs. (4) and (6), and Sy and fp/p, are as in the main text. [
The proof of Proposition 1 in Section 2 relies on the following preliminary result.

Lemma 1. Let {y,},~¢ be the (strong) solution to

dy, = b(y,)dt + a(y,)dW,, (45)

where W is a multidimensional Q-Brownian motion, and b and a are some given functions
(a is vector-valued). Let p and \y be two positive twice continuously differentiable functions,
and define,

T
. T) = E{exp (— /0 p(yt)dr) W0rp)

Yo = y} : (46)
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The following statements are true

(@) If Y/ >0, c is increasing in y whenever p'<0. If ' =0, c is decreasing in y whenever
p'>0.

(b) If " <0 (respectively, /" =20) and c is increasing (respectively, decreasing) in y, ¢ is
concave (respectively, convex) in y whenever b" <2p' (respectively, b" >2p') and p” =0
(respectively, p”<0). Finally, if b" =2p', ¢ is concave (respectively, convex) in y
whenever " <0 (respectively, >0) and p" >0 (respectively, <0).

Proof. Let ¢(y, T — 5) = Flexp(— fST p(y,)dt) - Y(y7) | ¥, = y]. The function c is solution to

0=—c(0, T —5)+ZLc(y, T —s)—p(y)ec(y, T —s), Y(,5)€Rx][0,T),
C(y, 0) = lp(y)7 Vy € R,

where Lc(y,u) = %||a(y)||2cyy(y, u) + b(y)ey(y,u), c2(y,u) = c,(y,u), and subscripts denote
partial derivatives. By differentiating Eq. (47) twice with respect to y, I find that ¢V(y, 1) =
¢y (v, 1) and ¢P(p, 1) = ¢;,(», 1) are solutions to the following partial differential equations:

(47)

d
0= — &0, T —5) + a0, T — 5) + [b(y) + % e ||a@)||2} Dy, T - )
~[p() = bW, T —5) = p' (e, T — ), (48)
where ¢V(y,0) = /() and

0= -1, T—5s) +%||a(y)||2c§?;(y, T—s)+ [b(y) +diyna<y)n2] P, T - s)

2
= [ = 2600 5 g3 10| @07 -
—200) BN, T~ )~ ' (el T ), #9)

where ¢ (y,0) =y (»).
By the Feynman and Kac theorem, the solution to Eq. (48) is

T
(DT —5) = E { / (5,2 —p 1))y T — 1) de

Vs = y:| + [E[K(Sa T)lp/(yT)LVs = y]’
(50)

where k(s,7) = exp{— f:[p(yu) — b'(y,)]1du}, and y is the solution to Eq. (45), but with drift
equal to b + %dinaH2 [which is the drift multiplying ¢{" in Eq. (48)]. Hence, ¢<(y, T — 5)>0

Y(y,s) € R x [0, T) whenever p'(y)<0 and /(y)>0 Vy € R. This completes the proof of
Part (a) of Lemma 1. The proof of Part (b) is obtained similarly. [

Proof of Proposition 1 (Part (a)). By Eq. (1), the price-dividend ratio satisfies

py) = /0 B(y,t)dt, (51)
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-

= y} , (52)

where

B(ya t) =k |:ﬁt - €Xp <_ /0 (R(yu) + Goi(yu) - gO) du) Yo

_ [E{exp <_ /0 (R(,) + 602(v) — o) du) ¥

E[-] is the expectation under the risk-neutral probability Q, E[] is the expectation
taken under a new measure Q defined as dQ/dQ = f, = exp(—— a3t + oo W), and W, is

the Brownian motion under O, defined as W, = W, + J21(y)dt. Under O, y, is the
solution to

2
dyt = [m@z) - Z Ai()"t)”i()’z) + O'()U](y,) dr + Ul(yt)dle + UZ(yt)dW2la (53)
i=1

where W is a O-Brownian motions and W, = W,. In Eq. (51), {B(y, t)},>0 is a collection of
bond prices in a fictitious economy in which the instantaneous interest rate is
p(») = R(») + 0941(y) — gy, and the risk-neutral probability measure is Q. By Lemma la,
for all 7, B,(y,7)>0 whenever p'(y) = R'(y) + 9oA;(¥) <0, i.e., whenever the risk-adjusted
discount rates are countercyclical. Finally by Lemma 1b, for all 7, B, (y,t)<0 whenever

(fy%[m(y) + aov1(y) — Ele Ai)vi(»)]<2p’(y) and p”(y)>0, for all y. By the definition of p,
these two inequalities are exactly those given in Conditions a.1 and a.2 of Proposition la. [

To ease notation, let Z(y) = Disc(y) = R(y) + go41(y), m = m(y) — Z,il Ai(»)vi(y) and
m(y) = m(y) + aov(y). One set of technical regularity conditions required in the main text is
H1: The functions R, m,m and v satisfy the following conditions:

1) minyeo_,,y—)%(y) >go>0.
(ii) Tim, ., () >0.

(iii) The functions [|m(y)| + v'(y)]lﬁ((f))‘ (i=1,2), and ||U(y)||2| 2’0) | are bounded.

(iv) The functions |-< day ()|, [[m(y) + v; (y)]g. (j))l (i=1,2), and ||lv(Y)| IZZ:,O) | are bounded.

Condition H1-i is an integrability condition. Condition H1-ii requires that under the
measure O introduced in Egs. (19) and (51), y is mean reverting in a neighborhood of y.
Finally, Condition Hl-iii (respectively, Hl-iv) bounds the rate of explosion of Z(y)
(respectively, #'(y)) to infinity. I now prove Part (b) of Proposition 1.

Proof of Proposition 1 (Part (b)). By assumption, Z(p) is strictly positive. Hence #(y,) =
R(yo)wi(a, ), wile, B) = expf folo(ry) = HB1y) + B )Dds + fo Ym0 B AW i),

where W; (i = 1,2) are Q-Brownian motions and

() = '(y)@g)) 10N 22 and (54
B = o 20 i, (55)

N
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By Eq. (51), the price—dividend ratio p(y) is the solution to the following differential
equation:
0 = JlIvl1*p" + (m + gov1 — 4 v)p" — (R — g + aol)p + 1, (56)

where v = [v1v;]. The Feynman and Kac representation of p in Eq. (56) is
_ [o.¢] t _ [o.¢] _ t
20 = E { / LT y} _ { / 010 [y wiliu g,
0 0

where [E denotes expectation under Q. By assumption, lim,_,, Z(y) = oo (large discount-

Yo = y}, (57)

ing). By HI-i, minye,5%(y)>g,. Hence by dominated convergence and HI-iii,
lim,_., p(y) = 0. By Eq. (56),
SolPp" = =1+ (2 = go)p — (m + govy — 1 v)p. (58)
Now suppose that lim,_,, p’(y) = oo. This implies that lim,_,, p”(y) <0. Alternatively,
assume that lim,_,, p'(y) <oo. By HI-ii, lim,_,,(m(y) + oov1(y) — (4 - v)(»))=0. As shown
above, limy%yp(y)_z 0. Hence, Eq. (58) impli_es that for small y, %||v||2p”< — 1+ %Zp.
Hence, lim,_,, p”(y) <0 whenever lim,_,, Z(y)p(y) = 0. But again inf,(Z(y,)) > g, and the
result follows by H1-iii and dominated convergence,

lim 2(0)p(y) = lim [E{ / M (e Jo P00 gyl y}
y=y =y Lo
= lim [E{ / N (R(p)e PO Jo il duy 4, Yo = y} —=0. (59)
=y Lo

Next, suppose that Disc(y) is bounded, but that #'(y)<0 and that lim,._, v R (y) = —00
(large asymmetry in discounting). Because %'(y) is strictly negative, it satisfies
AG)=AGWG, B, where  now  wi(@ B) = exp{[j20:) — 3B + Ba) )]s +
f(f D im12 Bi(y.v)dWis} and

5(0) = ) J5 3 + 3O ) and (60)
Bo) =00 G =12 (o)

Moreover, by differentiating Eq. (58), and applying the Feynman and Kac representation
to the solution of the resulting differential equation (similarly as in the proof of Lemma 1),
I find that

P0) = —E { /0 W (rp(r) di

Y= y} =-A(yE [ /0 kwi(o, Pp(y,) dt

Yo = y:| s
(62)
where the second line follows by the solution for £'(y), the process x, is such that

—Llogw, = R(y,) — g — diy[ (m(y,)) + oov1(y,) — A(»,) - v(y,)), and, finally, p, is the
solution to

dytzM(yt)dt+U(yz)tha Yo=1J, (63)
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where M =m+opvy — 40 +%(d%,||v||2). By lim,.,, A (y)=—-o00 and £ bounded,
lim_,, p'(y) = o0, and hence, lim,_,, p"(y)<0. O

Proof of Proposition 1 (Necessary conditions for countercyclical price sensitivity
S,(») = p'(y)). By differentiating Eq. (58) twice and applying the Feynman and Kac
representation to the solution of the resulting differential equation (similarly as in the
proof of Lemma 1 and Proposition 1b),

ﬂ@r=ﬁ£ (LG 0 — A Gp(0) dilye = 3] (64)

where z, is some strictly positive adapted process, and the function .o7(y) has been defined
in Proposition la. Because discount rates are countercyclical, p’>0 by the proof of
Proposition la. Then suppose that p is concave (i.e., p” <0). By Eq. (64), there must be a
set of values of y with strictly positive measure on which either .«/(y)<0 or 2”(y)>0, or
both. [

Finally, I provide a proof of a claim made in Section 2.2 (in fact, a direct corollary to
Lemma 1). Under risk-aversion corrections comparable to those discussed in Section 2.2,
the investors’ expectation of the future discount rates Disc(y,) fluctuates more in bad times
than in good times.

Corollary 1. Suppose that the discounl rates are countercyclical but not necessarily
, d s Dlsc(y)<0 and Disc(y);O, and that, under the probability Q in Eq.

(19), the expectation of the mstantaneous changes in y, is concave in the current state y, i.e.,

asymmetric, i.e.

%n’a(y)<0. Then the expectation under Q, E[Disc(y,)|y, = y] is decreasing and convex in y,
for all t.

Proof. Follows by Lemma 1, after setting y/(y) = Disc(y), p(y) =0 and b(y) = m(y). O

Proof of Proposition 2. The proof is similar to the proof of Lemma 1 and Proposition 1.
For space reasons, it is sketched. By no-arbitrage, the price—dividend ratio p satisfies

=102p. + [D(F = X) — oulp, + 102Dy, + [KG — 5) — Aya]p,

+300p, + B — @) — 240,p, — (R+ Apap — x)p + 1. (65)
By differentiating the previous equation twice with respect to s and once with respect to ¢
leaves three differential equations taking the form L'w' — p'w’ + /' =0, where w! = p,,

wr=p, W= =p,» and p' and h' are some functlons of x, s and ¢. By the same arguments

used for the proof of Lemma 1, the sign of w' is inherited by the sign of the functions /'.
The functions /' are

ODisc
1 = —
h=-—3 P (66)
P 2aDlsc n 0°(As0%) P 0“Disc » 67)

0s 0s2 s 0s2

ODisc  0(A0;) 1 92
3 _ sYS - s
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Part (a) of the proposition follows by the expression for 4' and the assumption that

%Disc>0. As regards Part (b), we have that p, <0 whenever I <0. Because %Disc>0,

then p,<0. Hence, if —%{;’V)>O, as assumed in Part (b), then ;<0 under Condition b.1.

Moreover, if —%j‘)>0, then Condition b.1 = Condition b.2 because, again, %Disc>0

and hence p, <0. Finally, notice that the conditions in Eqs. (37)—(38) in the main text imply
that #* <0 and hence, p,,<0. O

Interest rate and risk premia in a nonexpected utility environment [Eq. (40)]. By
assumption, consumption growth is solution to Eq. (39), and expected consumption
growth x,, consumption volatility s;, and the volatility of volatility ¢, are mean-reverting
processes:

Xf+A[ —_ x, = y(}? —_ xt) A[ + Gxﬁz’[_’_A[ vV At,

St+Ar — St = K(f - Sz) At + Us(sr, qz)83,t+At VAL,

Girnr — 90 = B(@ — q) At + 04(q,)eaaV At (69)
where ¢ = [e1,,- -, 4]  is a vector of independent and identically distributed standard

normal variables [¢, has been defined in Eq. (39)]. Let R,4a; be the arithmetic return in
Eq. (40),

~ P DiiaAt — P o
RH—AZ = Al + It;—A[ ! == éa[Al + VOI[ . SH_A[ A[, (70)
t

where &, are the expected returns, and Vol is the vector of return volatilities. (&; and Vol,
are pinned down below.) The log-pricing kernel in Eq. (40) satisfies

0 D ~
o2&~ 02, = ~0pr — 1og(25) 4.0~ Dlog(1 + Rees )
t
where
~ ~ 3
log(1 + Riyar) = Riyar — %”VOlr : 81+At||2At + O0y(An2). (72)

Taking the limit Az — 0, and applying the 1t6’s multiplication rule,

dP,+ D,dt 1

dlogé, = —Gpdt—gd log D, 4+ (6 — 1) — Vol * dt], (73)
v P, 2

where D; is as in Eq. (31). For small At, the return in Eq. (70) satisfies

dP;+ D, dt

e = &,dt+ Vol, dw,, (74)
t

where & is as in Eq. (35) and, by It6’s lemma applied to the price function
P(D, x,s,q) = D - p(x,s,q), the vector Vol = [Vol,---,Voly] is as in Eq. (34). Therefore,
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by It6’s lemma,

dé, 0 dE(log D;) 1 s
o —— ——=ZT (0 — 1), — = (6 — )| Vol
1 1
+3 op, + il 0)*|Vol*||?| d¢ —g op. AW, + (0 — 1)Vol, dW,, (75)

where op, = op(s,) and Vol* = [Vol,, Vols, Voly]. The expressions for the risk premia /; in
the main text follow immediately. The solution for the interest rate is obtained by plugging
Eq. (35) into the drift of the previous equation, by identifying the drift in Eq. (33), and by
rearranging terms. (Detailed computations are available upon request.)
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