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Abstract

This paper uses Garch models to estimate the objective and risk-neutral density
functions of financial asset prices and by comparing their shapes, recover detailed informa-
tion on economic agents’ attitudes toward risk. It differs from recent papers investigating
analogous issues because it uses Nelson’s result that Garch schemes are approximations of
the kind of differential equations typically employed in finance to describe the evolution of
asset prices. This feature of Garch schemes usually has been overshadowed by their
well-known role as simple econometric tools providing reliable estimates of unobserved
conditional variances. We show instead that the diffusion approximation property of Garch

Ž .gives good results and can be extended to situations with i non-standard distributions for
Ž .the innovations of a conditional mean equation of asset price changes and ii volatility

concepts different from the variance. The objective PDF of the asset price is recovered from
the estimation of a nonlinear Garch fitted to the historical path of the asset price. The
risk-neutral PDF is extracted from cross-sections of bond option prices, after introducing a
volatility risk premium function. The direct comparison of the shapes of the two PDFs

reveals the price attached by economic agents to the different states of nature. Applications
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are carried out with regard to the futures written on the Italian 10-year bond.q2001
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1. Introduction

It is now a common practice among researchers and practitioners to extract
detailed forward-looking information from financial asset prices. Recently, much
interest has been devoted to recovering the risk-neutral probability density func-

Ž .tion henceforth PDF of asset prices embodied in the prices of options. The
characteristics of the risk-neutral density can be recovered from a panel of option
prices by estimating the parameters of a system of stochastic differential equations,

Ž .a field in which non-parametric or semi-non-parametric SNP schemes have
found an increasing role. Examples are the non-parametric approach to the term

Ž .structure modeling and option pricing of Aıt-Sahalia 1996a,b , Aıt-Sahalia and Lo¨ ¨
Ž . Ž .1998, 2000 and Aıt-Sahalia et al. 1998 as well as the SNP model coupled with¨

Ž .efficient method of moments EMM employed to estimate the parameters of a
Ž .short term interest rate diffusion by Gallant and Tauchen 1998 and applied to an

Ž .option pricing scheme by Chernov and Ghysels 2000 .
Despite the flexibility of such estimators, in this paper we adopt a more

parametric approach to extract the information contained in the objective and the
risk neutral distribution functions of the futures contract written on the Italian

Ž .10-year benchmark government bond henceforth BTP . We do this by adopting a
Garch scheme as a tool to recover the coefficients of the underlying continuous
time generating process, both under the objective and the risk-neutral measures.

Though the motivation and the contents of this paper are intrinsically linked to
the alternative analyses mentioned above, there are many original aspects in our

Ž .work: i compared to the non-parametric approach, we explicitly consider a true
stochastic volatility case, as revealed by the use of a discrete time Garch model as
a continuous time stochastic volatility filter, along the lines put forward by Nelson
Ž . Ž . Ž .1992, 1996 and Nelson and Foster 1994 ; ii compared to EMM estimation, our
auxiliary model is not as highly parameterized as required by that technique: we

Ž .use an auxiliary discrete time model that is close to the continuous time scheme
and our need for indirect inference is only required as a correction for the

Ž . Ž .disaggregation bias see Section 2.1 ; iii from a more technical standpoint, unlike
Ž .Chernov and Ghysels 2000 we do not impose linearity for the drift function of

the volatility process under the risk neutral probability measure. Instead, we
propose a risk premium volatility surface that is a polynomial function of the
primitives of the model and we test and compare its ability to price options against

Ž .the competing linear specification; iv finally, we investigate a central issue of
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financial analysis, i.e. whether volatility risk is priced and what is its shape. The
paper is organized as follows: Section 2 shows how to use Garch models to
estimate the density functions under the objective and risk neutral measures.
Section 3 applies the techniques developed in Section 2. Section 4 compares the
shapes of the two densities and recovers parameters of interest for risk manage-
ment. Section 5 concludes.

2. Recovering the PDF

2.1. ObjectiÕe PDF: DGP-based analysis

Derivatives are typically priced upon the assumption that the value of the
Ž .underlying asset is a solution of a stochastic differential equation SDE with fixed

variance such as

dF smF dtqs F dW Ž1. , 1Ž .t t t t

Žwhere F is the underlying price process e.g. the price of a share or the price of
. Ž1.futures written on bonds ,W is a standard Brownian motion,m is a real

parameter ands is the volatility parameter.
The empirical evidence has strongly rejected the assumption of stability ofs

in financial markets, showing instead that volatility evolves according to an
unpredictable sequence of calm and turbulence, i.e. to heteroskedasticity. With
heteroskedastic returns, the evaluation of derivative assets becomes more difficult

Ž .than in the standard Black and Scholes 1973 world; also, the Black and Scholes
Ž .model suffers severe distorsions Hull and White, 1987 . Allowing variance to be

generated according to an autonomous SDE generally translates in closed-form
solutions requiring highly restrictive assumptions; Hull and White, the typical

Ž .reference model, assume that the price of the underlying asset follows Eq. 1 with
s 2 being the solution of another SDE

ds 2sfs 2dtqzs 2dW Žs . ,t t t t

where W Žs . is a Brownian motion, andf,z are real parameters. To derive a
closed-form solution for the price of a call option based on this model,1 they

Ž .assume among other things that: i the instantaneous correlation between the two
Ž1. Žs . Ž . Ž .Brownian motionsW and W is nil; ii f is nil and iii in pricing assets,

agents do not need compensation for the fluctuations of volatility.2 We will relax
the above three assumptions throughout the paper and the basic pricing methodol-

1 Other examples of closed-form solutions for the price of derivatives on assets with stochastic
Ž . Ž .volatility have been provided by Heston 1993 or Leblanc 1995 .

2 Ž .It is well known that iii is equivalent to the property that traded risks are discounted martingales
Ž .under the so-called minimal martingale measure introduced by Follmer and Schweizer 1991 .¨
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ogy that we will follow is based on the simulation of the relevant pair of stochastic
differential equations. This latter tool is necessary whenever one attempts to
generalise the Hull and White model by resorting to more complex dynamics and
analytic solutions are no longer available. Under such conditions, approximating
schemes based on conditionally heteroskedastic autoregressive models represent,
in our view and with the support of the data, a simple tool to recover the
parameters of the continuous time model. As we will show, they can be used
either as a direct device or as an indirect device within an indirect inference

Ž . Ž .approach. Nelson 1990 , for instance, showed that there exist versions of Ar 1 –
Ž .3Garch 1,1 processes that converge in distribution to the solution of the Hull and

White model.4 Other schemes, better responding to real life, have also been
suggested; in particular, if one supposes that the conditional volatility of an asset
price follows the Power Arch scheme of the first order introduced by Ding et al.
Ž .1993 , i.e.

dd d< <s sv qa ´ yg´ qb s ,Ž .n 1 1 ny1 ny1 1 ny1

gg y1,1 , v ,a ,b ,d gR4 , 2Ž . Ž . Ž .1 1 1 q

where the indexingns0,1, . . . refers to consecutive observations sampled at the
same frequency, and́ is a sequence of zero mean uncorrelated error termsn

Ž . Ž .coming from Eq. 3 below, then Fornari and Mele 1997, 2000a have shown that
Ž .Eq. 2 , coupled with equations of the form

F sF q i yu PF qF x ´ ,Ž .n ny1 1 1 ny1 ny1 n

´ s sPu , u ; i .i .d., i , u gR2 , xg 0,1 , 3Ž . Ž . Ž .nn n 1 1 q

are approximating processes converging in distribution toward the solution of the
following stochastic differential system

dF s iyuF dtqs F xdW Ž1. ,Ž .t t t t t

ds ds vyws d dtqzs ddW Žs . ,Ž .t t t t

wherei, u , v, w, z , d are non-negative parameters,W Ž1. is a standard Brownian
Žs . Ž1. 2 Ž2. Ž2.(motion,W srW q 1yr W , W is another standard Brownian motion

Ž Ž2. Ž1.. Ž . Ž . Ž .W independent ofW and rg y1,1 . In models such as Eqs. 2 and 3 ,
Ž .the concept of volatility is not restricted a priori, as in the traditional Garch 1,1

scheme, but can be estimated from the data; for example, whends1 the relevant
volatility concept is the standard deviation, while whends2, it is variance that
matters. Note further that leavingd free to be estimated will generally translate in

3 Ž . Ž .By Ar 1 –Garch 1,1 we mean that, given a stationary series´ , its conditional mean evolvest
Ž .according to an autoregressive model of the first order, while its conditional variance is a Garch 1,1 .

4 Ž .See, however, Corradi 2000 for conditions under which the diffusion approximation property
fails.
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a greater flexibility for the estimation of both the simulated objective PDF of the
asset price and the risk-neutral option pricing function

qyr ŽTyt . QC se PE F yK , 4Ž . Ž .t t T

where K is the strike of the option,T is the expiration date,Q is the risk neutral
Ž .PDF, andr is the constant risk-free interest rate. However, although the methods

that we employ in this paper could allow in principle to obtain consistent estimates
of x , i, u , the computational effort would be considerably increased, so that we
only restrict attention to the special casexs1 and isus0. The model that we
take as the DGP in this paper is thus

dF ss F dW Ž1. 5Ž .t t t t

d d d Ž1. 2 Ž2.(ds s vywPs dtqzs d rW q 1yr PW ,Ž . ž /t t t t t

whereas the discrete-time model that we use as a direct andror indirect device to
Ž .estimate the parameter vector of interesta s v,w,z ,r,d is–

F sF qF P´ , ´ s s u , 6Ž . Ž .nn ny1 ny1 n n

Ž .with Eq. 2 as the volatility propagation equation.
In the discrete-time model one can easily allow for the case of a non-normal

distribution, normality being unanimously rejected as a conditional or uncondi-
tional representation of the innovations. The specification that we adopt here is
that u is generated by theged5

1 1
yyy < <yexp y J P u Gyž / ž /2 y2u;ged s , J s ,y y1 2

1q 1 3
Õ y2 PJ G 2 Gy ž / ž /y y

Ž . Ž .whereG P is the Gamma function, andy y)0 is the tail thickness parameter
Ž .of the ged. Fornari and Mele 1997 showed that in some interesting cases the

Ž .joint use of d ,y can provide enough flexibility to fit complicated asset price
dynamics.

To obtain an estimate ofa within this framework, one can start by estimating–
Ž . Ž Ž . Ž ..the parametersbs v ,a ,b ,g ,d of the discrete time system Eqs. 6 and 21 1 1

Ž .by maximum likelihood ML ,

b̂sarg maxL F ;b ,Ž .N
b

Ž .where L P is the likelihood implied by the chosen model andN is the sampleN

size.

5 GED stands for the general error distribution.
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In a preliminary step, one then recovers the parameter vector of interesta by–
using the moment conditions that guarantee the convergence in distribution of the

Ž .discrete time system toward Eq. 5 , i.e.

vsDy3r2v1

d dy1wsD 1yn P 1yg q 1qg Pa ybŽ . Ž .ž /d ,y 1 1

y1r2 2 2d 2d 2 d dzsD m yn P g qg y2Pn Pg Pg Pa( Ž . Ž .Ž .d ,y d ,y ) )) d ,y ) )) 1

dyyq1
dq2

y dq1 d d2 J G g ygŽ .y ) ))ž /y
rs

y1 2 2d 2d 2 d dG y m yn P g qg y2n Pg Pg(Ž . Ž . Ž .d ,y d ,y ) )) d ,y ) ))

g s1yg
)

g s1qg
))

d
y1 dq1

y d2 J Gy ž /y
n sd ,y 1

G ž /y
2d

y1 2dq1
y 2d2 J Gy ž /y

m s , 7Ž .d ,y 1
G ž /y

Žwhere D is the fraction of the sample frequency to theAnumeraireB period e.g.´
Ds1r24 if the sample frequency is hourly and the unit of time is expressed in

. Ždays . The derivation of these formulae is detailed in Fornari and Mele 1997,
. Ž .2000b . To get an intuition of them, letv be a sequence of the formv ,h h ho 0

d dw xŽ . Ž .w s1yn P 1yg q 1qg Pa yb ,h d ,y h h

2d 2d d d2 2( w xŽ . Ž . Ž . Ž .z s m yn P 1yg q 1qg y2n P 1yg P 1qgŽ .h d ,y d ,y d ,y

Pa ,h

and

d du uh hk h hkd dŽ . Ž .1ygPs yE P 1ygPsk kž /' 'h h
jh hks ,

2d 2d d d2 2( w xŽ . Ž . Ž . Ž .m yn 1yg q 1qg y2n P 1yg 1qgŽ .d ,y d ,y d ,y
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'Ž . Ž . Ž . Ž .where u r h is ged. Then formulae 7 are identifying conditions: Eqs. 2h hk
Ž .and 6 can be embedded in a scheme of the form

F y F s s P F P uh hŽkq1. h hk h hŽkq1. h hk h hŽkq1.

s d y s d s v yw P s d qz P s d P j , 8Ž .Ž .h hŽkq1. h hk h h h hk h h hk h hk

Ž . Ž . Ž .when hs1; if there exist sequences of the formv , w , z suchh ho 0 h ho 0 h ho 0
y1 y1 y1r2 Ž .that lim h v sv, lim h w sw,lim h z sz , then Eq. 8 con-hx0 h hx0 h hx0 h

Ž .verges in distribution to the solution of Eq. 5 ashx0. As regards the intuition
Ž .behind r in Eq. 7 , this can be based on the appealing result that

d d1 F y F s y sŽ . Ž .h hk h h ky1 h h kq1 h hky1z E P FF ™r ,hkdž /h F P s sŽ .h h ky1 h hk h hk hx0

whereFF denotes the sigma-algebra generated byF , F , F , . . . , F andhk h 0 h h h 2h h hŽky1.
s d, s d, s d , . . . , s d . The same approximating scheme holds trivially for ah 0 h h h 2h h hk

conditionally normal Garch, after settingdsys2, gs0.6

Ž .One general difficulty with the moment conditions reported in Eq. 7 , how-
Žever, is that the class of strong Garch models those for which the rescaled

. Žinnovations,́ rs , are i.i.d. is not closed under temporal aggregation Drost andn n
.Nijman, 1993; Drost and Werker, 1996 so that when the continuous time

Ž . Ž .parameters obtained via Eq. 7 are plugged into a Euler’s discretization of Eq. 5 ,
a disaggregation bias arises. Hence they must be regarded only as a starting point
for an indirect inference approach which delivers their unbiased estimates for the

Ž . Ž .chosen discrete frequency. Thus models 2 and 6 , i.e.,
F yF ss F u , u ;ged ,nq1 n nq1 n nq1 n y

d dd d ds ys sv y 1yn P 1yg q 1qg Pa yb PsŽ . Ž .ž /nq1 n 1 d ,y 1 1 n

d dd dd < < < <qa Ps P u P 1ygPs yE u P 1ygPs ,Ž . Ž .Ž .1 n n n n n

s 'sign u ,Ž .n n

can be used as one of the possible discrete time counterparts of the DGP in an
indirect inference scheme with simulations drawn from

F y F s s P F P uh hŽkq1. h hk h hŽkq1. h hk h hŽkq1.

d d d d 's y s s vywP s PhqzP s P j P h , 9Ž .Ž .h hŽkq1. h hk h hk h hk h hk

for hsNyd with d)1r2.7 We also double the dimension of the high frequency
˜ ˜ ˜' Ž . Ž .generator by replacingj h with j h , where E j s0, var j shh hk h Žkq1. h hk h hk

˜Ž .and corr u P j srh, for all h.h hk h hk

6 Ž .In a companion paper dealing with term-structure issues Fornari and Mele, 2000a , we show that
Ž .Eq. 7 indeed provide a reasonable approximation, in that the correction brought about by indirect

inference is not important in terms of a specification test based on the ex-post adequacy of an
Ž . Ž .approximating model having the form of Eqs. 2 and 6 .

7 Ž .Such a value forh avoids asymptotic bias due to simulations; see Broze et al. 1998 .
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We leaved to be estimated by maximum likelihood, so that the parameter
Ž .vector of interest to be recovered restricts toas v,w,z ,r . The indirect infer-

Ž .ence estimation then runs as follows. After simulating Eq. 9 in correspondence
˜Ž s. ˜Ž s.Ž . � Ž .4of values of a, we obtain F a s F a , ss1, . . . ,S, whereS is theh,h h hk ks0

number of simulations. For each simulation, we retain the values ofŽ s. whichF̃

correspond to integer indexes of time and estimate the auxiliary model on each
simulated series to get

ˆ Žh. ˜Ž s.b a sarg maxL F a ;b , ss1, . . . ,S,Ž . Ž .Ž .N ,s N 1,hb

˜Ž s.Ž .where F P denotes the set of the bond futures prices with integer indices of1,h

time under simulations and time intervalh. An indirect estimator ofa is the
solution a , say, of the systemh N

S1
Žh.ˆ ˆa : 0sb y b a .ˆ ˆŽ .Ýh N N N ,s NhS ss1˜

Ž .The asymptotics for a a can be found in a straight forward manner byˆh N 0
Ž . Ž .combining Gourieroux et al. 1993 and Broze et al. 1998 , specifically,´

Sq1d Xy1y1 y1 y1'N a a ya ™N 0, V J I J V , 10Ž . Ž .Ž .ˆ Ž .N ≠` ,hx0N 0 0 0 0 0 0 0h ž /S

Ž .where a is the true parameter vector in Eq. 5 ,V is the 4=4 Jacobian matrix0 0
Žof the binding function here, the derivatives of the discrete time parameters with

.respect to the continuous time parameters evaluated ata , J the pseudo-true0 0

Hessian andI the pseudo-true covariance matrix of the scores of the auxiliary0

parameters.

2.2. Risk-neutral PDF: option based analysis

In this subsection we present the scheme designed to recover the risk-neutral
Ž .PDF. Given the model presented in the preceding subsection under Eq. 5 , the

methodology here consists in calibrating the parameters of the analogous continu-
ous time bivariate diffusion which generates, under the risk-neutral measure, the
changes in the underlying assetF and its volatilitys d in such a way as to match,t t

as closely as possible, observed cross-sections of option prices with different strike
prices and times to expiration. The assumption underlying our method is that the

Ž .market is correctly pricing the options by formula 4 . Under the risk-neutral
Ž .probability measure, by Girsanov theorem system 5 can be written as

Ž1. ˆ Ž1.dF syl s F dtqs F dWt t t t t t t

d d d Ž1. 2 d Ž2.(ds s vywPs yzPrPs Pl yzP 1yr Ps Pl dtž /t t t t t t

d Ž1. 2 Ž2.ˆ ˆ(qzs rdW q 1yr dW , 11Ž .ž /t t t
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ˆ Ž1. ˆ Ž2.whereW andW are standard Brownian motion under a probability measure
Q that is absolutely continuous with respect toP, the primitive, objective
measure;lŽ1. and lŽ2. are to be interpreted as risk-premia associated with the

Ž Ž ..fluctuations of the Eq. 5 Brownian motions, measurable with respect to the
Ž Ž1. Ž2..filtration of W ,W under Q. To ensure existence for the measureQ, it is

sufficient to impose a Novikov condition onlŽ1., lŽ2.. Furthermore, the market
Ž .incompleteness argument which affects schemes as Eq. 5 where the assetF has

to cope with two sources of risk, loses strength if the option is taken to complete
Ž .the markets in the Bajeux and Rochet 1996 sense and according to the further
Ž .developments in Romano and Touzi 1997 , as concerns an extension of the

Bajeux and Rochet results to the case of a correlation process and general
risk-premia of the kind that is considered here. This means essentially thatlŽ1. and
lŽ2. could be uniquely determined via preference restrictions of a representative
agent. As regardslŽ1., we have immediately by the martingale property of eyr tFt

Ž1. y1 8 Ž .under Q that it must satisfy:l syrs . Substituting back into Eq. 11 ,

ˆ Ž1.dF srF dtqs F dWt t t t t

d d dy1 Ž2. d 2(ds s vywPs qrPzPrPs yl PzPs 1yr dtž /t t t t t

d Ž1. 2 Ž2.ˆ ˆ(qzs rdW q 1yr dW . 12Ž .ž /t t t

It remains to identify the risk-premiumlŽ2.. Although this can be done through
a representative agent argument, as put forward before, we assume here that it can
be reasonably represented by means of a polynomial structure. This idea follows

Ž2. Ž Ž1. Ž2..from l being measurable with respect to the filtration ofW ,W and
Ž .further, by combining a result of Harrison and Kreps 1979 with Romano and

Ž . Ž Ž1. Ž2..Touzi 1997 , from the circumstance that the filtration ofW ,W and the
Ž . Ž2.filtration of F,s must coincide: thenl is a functional of past and current

Ž .values of F,s . We restrict attention to a Markovian structure and take the
following form9

p4Ž2. d 2dl sL F ,s sp qp Ps qp Ps q . 13Ž . Ž .t t t 1 2 t 3 t dst

We call the preceding function volatility risk premium surface. Our objective now
Ž .4 Ž .is that of estimating the parameter vectorqs p in Eq. 13 and recover ther rs1

Ž .shape of such unknown function. To do this, we simulate system 12 from the

8 Ž1. Ž .The fact thatl -0 does not necessarily imply that agents are risk-lovers in a model with 1
Ž . Ž .stochastic volatility; 2 negative correlation between volatility and the asset price; 3 positive

risk-premia for volatility. A proof of this is available on request. All these conditions are met in our
empirical implementation of the model; in Section 4, we show indeed that risk aversion is positive for a
wide range of values ofF.

9 Ž .We started with a much more complicated functional form, but Eq. 13 gave the best results with
the data employed in Section 3.
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w xcurrent periodt up to maturitiesTs T , . . . ,T , whereT matches the maturities1 N 1

of observed cross-sections ofN qN traded options, where the additionalN1 2 2

options come from the observed structure of the strike prices. In practice, the
risk-neutral PDF is easily obtained by matching the observed to the theoretical
option prices, the latter being simulated from the bivariate data generating process

d Ž .of F and s underQ, where the vector of parametersa' v,w,z ,r is fixed at
Ž .the indirect inference estimatesa a obtained before and the only unknownˆh N 0

left to be determined are the coefficients inq . For each simulationi, the call
Ž .prices are evaluated for the observed strike prices asC q sj,T ll

Ž . yr ŽT llyt . sim Ž Ž . .q Ž .1rsim e S F q yK , whereF q denotes the price at timeTis1 T i j T i llll ll

at the ith simulation obtained with the parameter vectorq , sim is the number of
Ž .simulations andK is the jth strike price js1, . . . ,N . The measure of distancej 2

Ž . Žbetween observed and fitted prices can be constructed asD q s1r N q1
. N 1 N 2 w Ž .x2N S S C yC q , where C is the observed option price; an2 lls1 is1 i,T i,T i,Tll ll ll

w Ž .xestimator ofq is arg min D q . More details of this are reported in Section 3.q

3. Empirical analysis

So far, we showed the usefulness of Garch schemes in approximating models
developed in continuous time as systems of stochastic differential equations. To

Ž . Ž .recall, the discrete time coefficients of a Garch 1,1 or a Power Arch 1,1 are
employed to recover the parameters of the continuous time model to which they

Ž Ž ..converge via the moment conditions Eq. 7 . Then such parameters are corrected
for the disaggregation bias by indirect inference and used to simulate paths of the

Ž .asset priceF T) t . Under the risk-neutral measure, the corrected coefficientsT
Ž .obtained for system 5 under the objective measure are still inserted in the

Ž Ž ..simulation scheme Eq. 12 of the asset price and volatility under the risk-neutral
measure; in addition explicit account is here made for the functional form of the
volatility risk premium, whose parameters are identified by fitting option prices

Ž .qobtained averaging the discounted values ofF yK over the simulations.T
Ž .Though we are mainly interested in the densityf F , it is worth pointing out that,

under the objective measure, other distributions can be extracted from the simula-
tion scheme; also, response analyses to modifications of the parameters of the SDE
can be envisaged, which may turn out useful for applications dealing with the

Ž .measurement of the so-called Value-at-Risk VaR . For example, the densities
Ž . Ž 2 . Ž 2.f F,t,T and g s ,t,T or the joint densityq F,s can be constructed through a

Ž .Monte Carlo simulation of Eq. 5 performed by the Euler–Maruyama discretiza-
Ž .tion scheme of the type reported in Eq. 9 .

Ž . Ž .To start with the objective density function, Eqs. 2 and 6 are estimated with
a ged-based likelihood function as illustrated in Section 2.1. These estimates are
performed for the full sample 1 January 1991 to 20 January 1997 as well as for
two subsamples having the same origin but ending on 22 July 1996 and 22
October 1996, respectively. Results for the three samples are reported in Table 1
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Table 1
Parch models

Estimation from January 1, 1991 to July 22, 1996

2F s117.59;s s0.0000236608t t

F yFt ty1
<u s s´ ;´ I ; gedt t t ty1 1.3188Fty1

0.8607 y4 0.8607 0.8607Ž < < .s s1.7879P10 q0.08971 ´ y0.5354́ q0.9212st t ty1 ty1

Estimation from January 1, 1991 to October 22, 1996

2F s122.60;s s0.0000202765t t

F yFt ty1
<u s s´ ;´ I ; gedt t t ty1 1.3038Fty1

0.9864 y5 0.9864 0.9864Ž < < .s s8.58153P10 q0.08876 ´ y0.44396́ q0.92189t t ty1 ty1

Estimation from January 1, 1991 to January 20, 1997

2F s131.47;s s0.0000173162t t

F yFt ty1
<r s s´ ;´ I ; gedt t t ty1 1.2685Fty1

1.1870 y5 1.1870 1.1870Ž < < .s s2.53724P10 q0.08324 ´ y0.3932́ q0.92662st t ty1 ty1

Ž . Ž . 2Note: Models are all Power Arch 1,1 .F is the value of the Italian 10-year bond BTP futures;s ist t

its conditional variance;I is the information set datedt; ged indicates the density defined in Sectiont y

Ž .2.1. All the parameters are significant according to the Bollerslev and Wooldridge’s 1992t-statistics.
Sample size is 1208, 1274, and 1334 for the three subsamples, respectively.

Ž . 10for the Power Arch 1,1 case. The conditional distribution of the errors departs
from normality, as highlighted byy , the tail-thickness parameter, which is

10 The choice of these three samples follows from previous work investigating market’s ability at
forecasting official interest rate moves. For this reason, all of the three samples end the day before a
change in the official interest rates. This circumstance has obviously no direct implication in the
present work.
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significantly different from two and more supportive of a Laplace assumption,
even though this hypothesis has to be statistically rejected.11 The estimate ofd is

Ž .very close to unity, though increasing across the three dates 0.86,0.99,1.19 ; a
Ž .standard volatility concept based on the variance i.e.ds2 , for instance, is

Ž .rejected. However, we repeat the estimates also for a Garch 1,1 with condition-
ally normal errors which, providing a discrete time approximation for the well-

Ž .known Hull and White 1987 scheme, may provide a benchmark in the option
pricing application reported below. The values of the parameters that maximise the
likelihood function in this case are reported in Table 2.

Table 3 reports the four continuous time parameters computed using the
Ž Ž ..moment conditions Eq. 7 . These figures are corrected via the indirect inference

Ž .principle as shown in Table 4. In the three Garch cases Table 4 last three lines ,
the effect of the correction was sizeable, with seven out of the nine changes
exceeding 20%. The drift parameterw moves from 0.198, 0.232 and 0.27 to 0.15,
0.18 and 0.15 in the three samples, respectively, while the diffusion terms are
strongly pushed downwards, from 0.94, 0.90 and 0.81 to 0.75, 0.60 and 0.60,
respectively. The corrections are much lower in the case of the Power Arch
scheme, with just one coefficient out of 12 changing by more than 20%. The

Ž .volatility drift coefficients w were 0.82, 0.74, 0.56 at the three dates and the
corrected figures 0.90, 0.60 and 0.65; the analogous figures for the diffusion terms
move from 0.51, 0.55 and 0.64 to 0.63, 0.55 and 0.57, respectively. The
coefficient of conditional correlation remains stable after the correction.

We evaluated thet-ratios for the corrected coefficients with concern only for
Žthe case in which the Power Arch plays the role of auxiliary model it will also be

.the only scheme upon which the subsequent analysis rests and for the overall
Ž . Žsample. For the vector of parameters 0.015, 0.65, 0.57,y0.56 Table 4, last

.column, first four rows , the correspondingt-ratios evaluated according to the
Ž . Ž .variance in Eq. 10 were found to be 23.41, 7.11, 3.34,y3.70 , highly

supportive of the significance of the estimates. It is also interesting to note that
three out of the four coefficients obtained as concerns this sample through the

Ž Ž .. Ž .moment conditions Eq. 7 see Table 3, last column, first four rows are within
the 95% confidence bands defined by the corresponding indirect inference esti-
mates and by thet-ratios reported above. The continuous time coefficientv fails,

Ž Ž .albeit marginally its value based on formulae 7 is 0.01269 against a lower value
.of the confidence band as of 0.0137 to reconcile with the indirect inference

correction.12

11 In the three cases, the closest-to-unity value that cannot be statistically rejected is approximately
1.1.

12 Analogous results supporting the reliability of the continuous time coefficients implied by the
Ž . Ž .Power Arch via closed formulae 7 were found in a closely related paper Fornari and Mele, 2000a .

Ž .See also Fornari and Mele 2000b for further discussion.
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Table 2
Garch models

Estimation from January 1, 1991 to July 22, 1996

2F s117.59;s s0.0000253876t t

F yFt ty1 2< Ž .u s s´ ;´ I ;N 0,st t t ty1 tFty1

2 y7 2 2s s3.00851P10 q0.08393́ q0.9134st ty1 ty1

Estimation from January 1, 1991 to October 22, 1996

2F s122.60;s s0.000023163t t

F yFt ty1 2< Ž .u s s´ ;´ I ;N 0,st t t ty1 tFty1

2 y7 2 2s s2.9634P10 q0.0804́ q0.91592st ty1 ty1

Estimation from January 1, 1991 to January 20, 1997

2F s131.47;s s0.000025465t t

F yFt ty1 2< Ž .u s s´ ;´ I ;N 0,st t t ty1 tFty1

2 y7 2 2s s2.9634P10 q0.07211́ q0.92356st ty1 ty1

Ž . Ž . 2Note: Models are all Garch 1,1 .F is the value of the Italian 10-year bond BTP futures;s is itst t

conditional variance;I is the information set datedt. All the parameters are significant according tot
Ž .the Bollerslev and Wooldridge’s 1992t-statistics. Sample size is 1208, 1274, and 1334 for the three

subsamples, respectively.

The objective PDF at two dates, based on these coefficients, will be shown,
along with the risk neutral PDF, in Section 4. As recalled before, apart from the

Ž .density f F , one can obtain other information items from the simulation scheme
Ž .based on system 5 . To briefly illustrate this opportunity, some additional

information about the objective data generating process has been evaluated for the
first of the three dates analyzed, 22 July 1996, for the Power Arch case only. The
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Table 3
Continuous time parameters implied by the discrete time parameters

22 July 96 22 October 96 20 January 97

PARCH
y2 y2 y2v 8.94=10 4.291=10 1.269=10

w 0.81659 0.74186 0.55914
z 0.50796 0.55273 0.63806
r y0.61187 y0.55486 y0.52994

GARCH
y4 y4 y4v 1.5044=10 1.48184=10 1.48184=10

w 0.19821 0.23184 0.27279
z 0.94211 0.90249 0.80943

Note: The parameters are obtained by replacing the discrete time parameters of Tables 1 and 2 into the
Ž .moment conditions 7 . For the Garch case, the instantaneous correlation coefficient has been fixed at

zero.

Ž .closing price of the futures on that day was 117.59, the not rescaled conditional
variance 2.36=10y5. In Figs. 1–3 we show the distribution of the BTP futures

Ž . Ž .price, f F , and the densities of the continuously compounded returnsu
Ž . Ž . Ž .evaluated at three horizons, 60, 20 and 5 days, i.e.g u,t,60 , g u,t,20 , g u,t,5 ,

Ž . Ž .where with g u,t, z , we denote the probability ofu at time tqz z)0 given
Ž .time t. The density of the returns is obtained as in Aıt-Sahalia and Lo 2000 , i.e.¨

Table 4
Continuous time parameters estimated via indirect inference

22 July 96 22 October 96 20 January 97

PARCH
y2 y2 y2Ž . Ž . Ž .v 8.4=10 y6.0 3.5=10 y18.4 1.50=10 18.2

Ž . Ž . Ž .w 0.90 10.2 0.60y19.1 0.65 16.2
Ž . Ž . Ž .z 0.63 24.0 0.55 0.00 0.57y11.0
Ž . Ž . Ž .r y0.65 y6.2 y0.58 y4.5 y0.56 5.7

GARCH
y5 y4 y4Ž . Ž . Ž .v 4.5=10 y70.0 1.4=10 y5.5 1.1=10 y25.7

Ž . Ž . Ž .w 0.15 y11.0 0.18 y21.7 0.15 y44.4
Ž . Ž . Ž .z 0.75 y20.3 0.60 y33.5 0.60 y25.9

Ž . Ž .Note: These estimates correct those derived through Eq. 7 for the dis aggregation bias due to the
Ž .strong Garch class being not closed under temporal dis aggregation; see Section 2.1. In parentheses,

the percentage change with respect to the values reported in Table 3. The correction is based on the
Ž .indirect inference procedure described in Section 2.1. Data are simulated out of the auxiliary model 9

with a frequency of 20 per day; the overall length of the three simulations is thus equal to sample size
times 20. The sample size for the three subsamples is 1208, 1276, and 1334, respectively.
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Fig. 1. Density functions of the BTP futures price at July 22, 1996. Note:Ž1.Density function of the
BTP futures prices simulated according to the set of parameters reported in Table 4.Ž2.Same density
but with the diffusion parameter of the volatility equation equal to the value in Table 4 plus one.
Ž3.Drawn by setting the diffusion parameter of the conditional variance equation equal to the value in
Table 4 minus 0.5, while the two coefficients in its drift term are scaled so to bring the autocorrelation
of the volatility from 0.9857 to 0.9642.

Ž . Ž .g u,t, z is recovered by first evaluating thetsTy t -period continuously
Ž .compounded returns,u s log F rF and then constructing a kernel estimator oft T t

Ž1. Ž . Ž2. Ž .Fig. 2. Density functions of BTP futures returns as of July 22, 1996. Note:g u,t,5 ; g u,t,20 ;
Ž3. Ž .g u,t,60 . The prices of the BTP futures are simulated by plugging the parameters reported in Table

Ž .4 into system 5 .
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Ž1. Ž . Ž2. Ž .Fig. 3. Density functions of BTP futures returns as of July 22, 1996. Note:g u,t,5 ; g u,t,20 ;
Ž3. Ž .g u,t,60 . The prices of the BTP futures are simulated by plugging the parameters reported in Table

Ž .4 into system 5 and lowering the diffusion coefficient of the volatility equation by 0.5 and reducing
the autocorrelation of the volatility.

Ž . 13 Ž .the density functiong P of these returns. The relation betweeng u andt

Ž .f F,t,T can be established by noting that

Ž .log FrFtutPr F FF sPr F e FF sPr u F log FrF s g u du .Ž . Ž . Ž .Ž . Ž . HT t t t t t
y`

Ž .In a second step the price densityf F,t,T corresponding to the return density
estimated in the first step is recoverd as

E g log FrFŽ .Ž .t
f F ,t ,T s Pr F FF s . 14Ž . Ž . Ž .T

EF F

This is the density that we use in Section 4; an analogous device will be used to
get the risk-neutral density that is also used in Section 4.

Ž .The two types of densities of prices and returns are based on a single long
simulation of 200,000 points drawn at the frequency of 20 per day, which have
been successively re-sampled at the desired daily frequency, giving a total of
10,000 points. We also performed a sensitivity analysis exercise, in which the
diffusion coefficient of the conditional volatility equation and the speed of

Žreversion of the conditional volatility to its long run mean which equalsvrw as

13 Ž .Details on kernel estimation can be found in Hardle and Linton 1994 . The reason for adopting¨
kernel estimation here is purely related to graphical purposes, i.e. to nicely represent the simulated
PDF.
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Ž .. Žcan be easily seen from Eq. 5 are moved away from their original values see
.Table 4, first column, Power Arch case ; this last exercise would be helpful,

within a VaR strategy, to anticipate how worse a portfolio’s risk might become in
a particularly turbulent environment. Fig. 1 shows three price densities: the

Ž .distribution labelled with 1 corresponds to the simulation performed with the
Ž . Ž .estimated parameters reported in Table 4 ; label 2 indicates that the diffusion

parameter in the volatility equation has been set to its original value of Table 4
Ž .plus one; label 3 indicates instead that the coefficient of autocorrelation of the

Ž .volatility has been lowered from the estimated figure 0.9857 to 0.9642, while the
diffusion parameter has been lowered by 0.5. The most evident thing to see is the
larger area put especially in the left tail when the diffusion parameter of the
volatility equation is increased, which would attach positive probability to out-
comes earlier considered as unrealistic. The densities reported in Fig. 2 are drawn
conditional on the estimated parameters; they highlight the range of possible
outcomes, expressed in terms of returns, which one may expect 5, 20 and 60 days
ahead. It is evident that the typical gaussian quantiles employed in most VaR
applications would fail substantially in the definition of extreme event at the
60-day horizon, quite a typical one in most practical cases. The lower value of the
diffusion parameter in the volatility equation, under which the densities of Fig. 3
are drawn, evidences the greater weight of central events rather than tail events,
compared with Fig. 2. It is interesting to note, looking at Fig. 2, the negative
skewness of the distribution which, in principle, one would not expect whenFt

evolves like a martingale with fixed volatility or with stochastic volatility not
correlated with F itself. In the present situation, i.e. with negative correlationt

between the two Brownian motions, one would instead expect positive skewness
Žto appear, given that returns fall when the shock to the volatility hence the

.volatility increases. This kind of results, i.e. the emergence of a negative
skewness, is however in accordance, for instance, with the findings of Heston
Ž .1993 . What happens is that the negative correlation between the sources of risk
increases the area in the left tail of the returns distribution, an occurrence which
finds compensation in an additional probability mass in the positive range of
returns, aimed at forcing the density to still integrate to one.

Coming to the risk neutral PDF, it is worth considering that if risk-premia were
negligible, the values of the four relevant parameters obtained under the objective
measure would deliver the optimal pricing scheme also for the call options under
the equivalent probability. To test this, and indirectly to evidence the presence of a
volatility risk premium, we evaluated the option prices by re-interpreting system
Ž .5 under the risk-neutral measure; in this scheme the price of each option is
obtained as the average of 1000 simulated prices. The parameters which best
priced the three samples of options are reported in Table 5 for both the Garch and

Ž .the Power Arch case; options are evaluated according to Eq. 4 . The fit of the two
models at the three dates, 22 July 1996, 22 October 1996 and 20 January 1997, is
based on cross-sections of 107, 140 and 135 options, respectively, with maturity
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Table 5
Ž .Parameters of system 5 which minimize the option pricing error

N 2r v w z N S ´ rNIs1 i

PARCH
y4July 22, 1996 y0.069 8.6=10 0.125 0.315 107 0.048
y4October 22, 1996 y0.162 4.75=10 0.130 0.250 140 0.036
y3January 20, 1997 y0.170 1.0=10 0.740 0.140 135 0.042

GARCH
y4July 22, 1996 0.0 2.6=10 0.52 0.135 107 0.112
y4October 22, 1996 0.0 2.8=10 0.62 0.040 140 0.115
y4January 20, 1997 0.0 2.8=10 0.64 0.035 135 0.090

Ž .Note: These estimates refer to system 5 interpreted under the risk-neutral measure. They differ from
those obtained under the objective since they embody information concerning the risk premia related to

Ž 2.the fluctuation of the two state variablesF,s . N is the number of options employed in each of the
three samples,́ is the difference between the observed and the predicted price of theith option. Thei

maturities of the options at the three dates ranged from 51 to 149 days.

ranging from 51 to 149 days; the constant short term interest rate has been fixed at
Ž . 145.0% per year . There are sizeable differences between the objective and the

hypothetical risk-neutral parameters, suggesting that volatility risk is priced by
economic agents since, if this were not the case, the parameters should indeed stay
unchanged under the two measures.15 Under the Power Arch scheme the three
sums of squared pricing errors were 4.79, 5.05 and 5.69 for the three dates,
respectively, which amounts to a mean squared error slightly above 4% on
average. The same measure nearly doubles with the Garch assumption and
highlights the importance of adopting a proper parameterization of the volatility
dynamics.

Ž .At this point we use Eq. 12 and fix the relevant vector of parameters at the
values appearing under the objective measure; in addition, we letr and lŽ2., ast

Ž .generated by Eq. 13 , reveal the risk premia required for the fluctuations of the
two state variables; as before, each option price is obtained as simple average of
1000 simulated prices.16 From now on, we will work only with the Power Arch
pricing scheme, based on its superior pricing performance, as evidenced by the

Ž . Ž2.preliminary test of Table 5. We use the functional form of Eq. 13 forl and wet

14 Option prices are closing prices. In all cases the regression of the 1000 simulated prices on a
constant revealed that the latter was statistically significant, which supports the validity of the pricing
procedure.

15 Ž .Recent independent work by Chernov and Ghysels 2000 addresses the problem of employing past
returns and option prices jointly in the estimation of the relevant parameters of the asset price diffusion.

16 Since antithetic variates are employed, the simulated prices for each option are 4000, due to 1000
Ž .times the four combinations of the sign of the two sources of noise. In any case, we report the prices

to be 1000 since 1000 is the true number of errors drawn at the beginning of the simulation.
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Table 6
Coefficients of the volatility risk premium function

N 2p p p p S ´ rN1 2 3 4 Is1 i

PARCH
Ž1.July 22, 1996 10.0 y9.6 y40.0 y0.045 0.044

Ž1.October 22, 1996 7.5 y9.6 y33.0 y0.017 0.006
Ž1.January 20, 1997 10.0 y9.6 y40.0 y0.035 0.025

Ž2.Full sample 7.0 y15.0 y40.0 y0.075 0.045
Ž3.Full sample 7.0 y15.0 y40.0 y0.075 0.085

Note: The term´ is the difference between observed and predicted option prices.N is the number ofi
Žoptions employed in the evaluation of the pricing error see Table 5 for the first three samples and

Ž . Ž . .notes 2 , 3 to this Table for the other samples . The functional form of the volatility risk premium is:
lŽ2.s p q p Ps dq p Ps 2dq p rs d. Ž1.The maturity of the options at this date ranged between 51t 1 2 t 3 t 4 t

and 149 days.Ž2.The full sample comprises 284 trading days between December 18, 1995 and January
31, 1997. The call options examined in this case were those with moneyness ranging from 0.97 to 1.03.
There were 7621 of such options; their maturity ranged from 21 to 147 days.Ž3.The full sample
comprises 284 trading days between December 18, 1995 and January 31, 1997. The options examined
in this case were those with moneyness ranging from 0.93 to 1.07. There were 15,045 such options;
their maturity went from 21 to 147 days.

manage to select values forp –p which produce pricing errors analogous to those1 4

previously obtained in Table 5, when the objective parameters were free to vary
and accommodated the presence of volatility risk premia. The coefficients of this
functional form, which does not include any power of the first state variable, i.e.
the futures price, while it includes three of the volatility, specifically
Ž d 2d d .s ,s ,1rs , in addition to a constant term, for the three dates employed
throughout the paper, are shown in Table 6 along with the pricing errors; the shape
of the three risk premium functions is reported in Fig. 4. A major concern we had

Ž .Fig. 4. Volatility risk premium. Note: The volatility risk premiumÕrp comes from the following
specification:Õrps p q p s dq p s 2dq p rs d. The parameters are reported in Table 6.Ž1.22 July1 2 t 3 4 t

1996; Ž2.22 October 1996;Ž3.20 January 1997. The volatility reported on thex-axis is s .
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about the stability of this functional form did not turn out to be motivated: the
curve appears noticeably stable across the three dates. This is quite an important
and reassuring evidence, since the results of the following section, which focuses
on the state price densities, rest on the stability of the prices of risk.

To have additional evidence on the stability of such estimated risk premium
functions, we enlarged the analysis to a much wider sample. This is made up of
29,173 call options quoted at Liffe and collected between December 18, 1995 and
January 31, 1997, embracing the three single dates analyzed before; the maturity
of the options ranges from 21 to 147 days and their prices are daily closing prices.
The identification of the volatility risk premium in this larger sample is carried out
on two subsamples of options, both spreading the whole time sample but differing
as concerns moneyness. The first subsample is made up of 7621 options, which

Ž .are selected according to the criterion employed by Chernov and Ghysels 2000
based on discarding all the options whose moneyness falls below 0.97 and beyond
1.03. The second subsample considers instead the 15,045 options whose money-
ness ranges between 0.93 and 1.07; it is used to test the adequacy of the nonlinear
volatility risk premium function at pricing in- and out-of-the-money call options.
For the first subsample we report, in the fourth line of Table 6, the volatility risk
premium specification which delivers the best fit; surprisingly, it does not change
significantly from the specification adopted in the first three single trading days.

The value of the pricing error over the 284 trading days and for all the options
observed in a given day is reported in Fig. 5. It is analogous in size to the value

Ž .recorded on July 22, 1996 and is worth noting that 0.045 i.e. 4.5% is the average

Fig. 5. Option pricing error. Note: The option pricing error reported in this graph refers to 284 trading
days between December 18, 1995 and January 31, 1997, for a total of nearly 18,000 options. Each
point is the average of the squared deviation between observed and theoretical prices of all options
within a trading day.
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value for all of the 284 trading days analyzed, including 11 days in which the error
was slightly above 10%, which have not been reported in Fig. 5 for graphical
reasons. This result is not worse than the figures reported in Chernov and Ghysels
Ž .2000 , who found the equivalent of our pricing error to be, for options with
moneyness ranging from 0.97 to 1.03 and for all the maturities observed in the
market, 8.1% under the Black and Scholes pricing scheme and 6.3 under Heston’s
Ž .1993 stochastic variance scheme. When the sample is further enlarged to
consider out- and in-the-money options, yet the best functional form of the
volatility risk premium does not change; in this case, however, the mean squared

Ž .percentage error nearly doubles, to reach 8.5 percent Table 6, last line . Analo-
gous figures from Chernov and Ghysels are not available in this case, since the
authors choose not to price options with moneyness beyond 1.03, given the
reported lack of liquidity for such instruments; in any case, the errors they make in
pricing options with all maturities and with moneyness ranging from 0.94 to 1.03
are 6.1% under Black and Scholes and 4.0 employing Heston’s model. It is
obvious to conclude that the greatest part of the additional errors made by our

Žpricing scheme in the second larger sample Table 6, last column, last line, against
.last column, sixth line must be attributed to thinly traded in-the-money options.

4. Implications for risk management

Before examining the indications about risk which one can draw from the
estimated density functions, we briefly illustrate why comparing the two types of
PDF assumes particular relevance in finance. First of all, as outlined in Aıt-Sahalia¨

Ž .and Lo 2000 , the ever expanding liquidity of financial markets and the increasing
globalization calls for appropriate insurance of economic agents’ portfolios, a

Ž .necessity which has recently been popularized by the Value at Risk VaR
strategy. If an investor did not consider the information contained in the risk-neu-
tral measure but were to follow the indications deriving only from the objective, it
is immediate to see, from what were explained in Sections 2.1 and 2.2, that his
portfolio would be substantially unbalanced, since he could not include informa-
tion about state prices. Second, the measure of risk aversion that can be extracted
from estimated PDF is important insofar as it sheds light on the preferences ofs

investors themselves. By using a simple general equilibrium model a la He and`
Ž . 17Leland 1993 , one has the standard result that

P RN F U X CŽ . Ž .T T T
k E ' sk , 15Ž . Ž .Xt T OBJ U CP F Ž .Ž . t tT

with k constant, whereP RN and P OBJ are the risk-neutral and the objective
Ž .density, respectively,U P is the instantaneous utility function as of times of as

17 Ž . Ž .See Rosenberg and Engle 1998 and Jackwerth 2000 for related work.
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Fig. 6. January 20, 1997: objective and risk-neutral PDF. Note:Ž1.This is the objective density function
Ž .of the BTP futures price at January 20, 1997. It is obtained by simulating Eq. 5 with the continuous

time parameters reported in Table 4.Ž2.This is the risk neutral density function. It is obtained by
Ž .simulating system 12 with the continuous time parameters reported in Table 4 and the volatility risk

Ž .premium 13 with those reported in Table 6.

Ž .representative agent, andC is consumption which equalsF at ssT. If k Ps s

varies across prices one is led to conclude that significant information contained in
the risk neutral density is not included in the objective. Hence, a direct measure
represented by the ratioP RNrP OBJ is a simple test for risk-neutrality. Also,

Ž .Aıt-Sahalia and Lo 2000 make the key insight that the coefficient of the¨
Ž .Arrow–Pratt measure of absolute risk aversion—r F , say—can be expressed asT

XŽ . Ž . YŽ . X Ž . Ž .yk F rk F syU F rU F 'r F , which finds empirical counter-t T t T T T T T T

part in the expression
X XOBJ RNP F P FŽ . Ž .Ž . Ž .t T t T

r F s y , 16Ž . Ž .ˆ T OBJ RNP F P FŽ . Ž .t T T

where primes indicate derivatives. In the following applications, first derivatives
for both densities have been evaluated numerically.18

Fig. 6 shows the objective and the risk neutral densities estimated on January
Ž .20, 1997, while Fig. 7 reports the coefficient of absolute risk aversionara

Ž . Ž .19obtained with formula 16 and the marginal rate of substitutionmrs obtained

18 We can interpret the exercise of the present section as an experiment carried out in a partial
^ Ž ^.equilibrium world, in which one investor holds bonds with maturityT until T T-T , sells them to

another investor atT, and then consumes the receipts atT. While this interpretation is restrictive, it is
also very helpful in assessing a fist order approximation of attitudes towards risk of market participants.

19 Actually, mrs is a proxy for the marginal rate of substitution, since it does not disentangle the
Ž .constantk and the level of marginal utility. See formula 15 .
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Ž .as ratio of the risk-neutral to the objective PDF, as in Eq. 15 ; Figs. 8 and 9 show
the analogous objects as of October 22, 1996. The different shapes and informa-
tion contents of the two densities naturally reflect in the deviations ofara from
zero and in the fact thatmrs is not constant, which one would instead find under
risk neutrality, i.e. under absence of risk premia; this is especially true for deep-in
and deep-out of the money states, with discrepancies vanishing as long as the
moneyness approaches unity. The estimated coefficients of absolute risk-
aversion20at the two dates are slightly decreasing from out-of the-money to
at-the-money states, which can in principle support the idea that investors are
willing to pay less for insurance the higher their wealth. As of January 1997, the
ara equals values as high as 0.3 for out-of-the-money states, then dropping toward

Žzero as long as moneyness moves to unity i.e. whenF approximately equalst
.133 ; as of October 1996, this behavior is much more pronounced, withara

decaying very slowly towards nil to subsequently become largely negative for
deep in-the-money states. In any case, the tail behavior of the absolute risk
aversion is very different from the behavior in the remaining domain of the
expected prices at expiration. Analogous indications come from themrs being

Ž .very variable across states i.e. prices at expiration . These series of proxies for the
mrs naturally embody indications on the expected returns from buying at timet an

20 We remind some well-known basic facts, which may help the reader through the results presented
Ž . Ž . Ž .below. Pratt 1964 shows that, given a utility function for moneyu x , the function r x s

YŽ . XŽ . Žyu x ru x is interpreted as a measure of local risk aversion or local propensity to insure hence
Ž . .y r x would measure propensity to gamble ; it is a decreasing function ofx if and only if the cash

equivalent is a direct function of the economic agent’s assets, and a negative function of the risk
Ž .premium and the amount he would be willing to pay for insurance. Utility functions for whichr x is

decreasing are candidates to use when describing the behavior of people who would pay less for
insurance as far as their assets increase; however, there are no strong a-priori for not having utility

Ž . Ž .functions for whichr x is first decreasing and then increasing. From an analytical standpoint,r x is
Ž .a also a measure of the concavity ofu x at x.

Ž . YŽ . XŽ .Starting from the definition of absolute risk aversion, that isr x sksyu x ru x sydrd x
w XŽ .x Ž .log u x , it is easy to derive the utility associated to a given value ofr x , by integrating,

exponentiating and integrating again the above expression, i.e. with imprecise but usual notation,
w X x yHr Ž .yHrs log u qc´u;He . If the local risk aversion is constantc, viz., r x sc all x, then

u x ; x if cs0Ž .
u x ;yeyc x if c)0Ž .
u x ;eyc x if c-0.Ž .
The three utilities are linear, strictly concave and strictly convex, respectively. Coming back to the

Žeconomic meaningfulness of having decreasing absolute risk aversion investors wish to gamble when
. Ž . Ž .ctheir wealth increases , the utilityu x sy by x ,c)1,xF b, cannot have decreasing risk

Ž .aversion. As Pratt 1964 shows, one can obtain decreasing and increasing absolute risk aversion for
XŽ . Ž a .yc Ž . Ž .different ranges ofx by considering the case whereu x s x qb a)0,c)0 , for which r x

1ya Ž .is strictly decreasing whenxqbx G0. Pratt 1964 indicates a set of utility functions which have
Ž . Ž . Ž . Ž .qstrictly decreasing risk aversion. Among these,u x ; log xqd ,dG0,u x s xqd ,dG0,0-q

-1.
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Fig. 7. January 20, 1997: marginal rate of substitution and absolute risk aversion. Note:Ž1.ara is the
coefficient of absolute risk aversion. It is obtained asPXOBJrP OBJyPXRNrP RN where the symbolX

denotes derivatives andP RN and P OBJ are, respectively, the risk-neutral and the objective densities of
Fig. 6. Ž2.mrs proxies the marginal rate of substitution; it is obtained asP RNrP OBJ, where P RN and
P OBJ are, respectively, the risk-neutral and the objective densities of Fig. 6.

Arrow–Debreu security paying one unit of money in a given state and selling it at
Ž .time T see, again, Aıt-Sahalia and Lo, 2000 ; this type of information is¨

fundamental in revealing the probability which the market attaches to the occur-

Fig. 8. October 22, 1996: objective and risk-neutral PDF. Note:Ž1.This is the objective density function
Ž .of the BTP futures price at October 22, 1996. It is obtained by simulating 5 with the continuous time

parameters reported in Table 4.Ž2.This is the risk neutral density function. It is obtained by simulating
Ž .system 12 with the continuous time parameters reported in Table 4 and the volatility risk premium

Ž .13 with those reported in Table 6.
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Fig. 9. October 22, 1996: marginal rate of substitution and absolute risk aversion. Note:Ž1.ara is the
coefficient of absolute risk aversion. It is obtained asPXOBJrP OBJyPXRNrP RN where the symbolX

denotes derivatives andP RN and P OBJ are, respectively, the risk-neutral and the objective densities of
Fig. 8. Ž2.mrs proxies the marginal rate of substitution; it is obtained asP RNrP OBJ, where P RN and
P OBJ are, respectively, the risk-neutral and the objective densities of Fig. 8.

rence of a given state which in turn helps to quantify the proper Value-at-Risk of a
portfolio. In fact

P OBJ FŽ .T
r s y1, 17Ž .t yrt RNe P FŽ .T

Fig. 10. January 20, 1997: expected returns of Arrow–Debreu securities. Note:Ž1.Expected returns of
Arrow–Debreu securities evaluated according to the risk-neutral and the objective densities based on

Ž . Ž . Ž .the simulation of Eqs. 5 , 12 and 13 , respectively, with the parameters reported in Tables 4 and 6.
Ž2.Expected returns of Arrow–Debreu securities evaluated according to the objective and risk-neutral
densities derived from the scheme of Black and Scholes.
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is approximately the expected return of an Arrow–Debreu security written att for
the stateF . It is then interesting to compare the indications coming out of theT

densities estimated in this paper to the analogous indications arising from the
standard scheme of Black and Scholes. By fixing the standard deviation of the

Ž .futures price changes to 9.1% per year the historical value , we evaluated the
objective and the risk-neutral PDF under the Black and Scholes assumption.
Expected rates of return for various states of the futures price for both the Black

Ž . Ž . Ž .and Scholes scheme and for model composed by Eqs. 5 , 12 and 13 are
reported in Fig. 10. They evidence, for the sample ending on January 20, 1997,
remarkable differences between the prices to be paid for insurance against the
occurrence of most of the price states reported there. Once again, the importance
of an adequate characterization of the price and volatility dynamics emerges
clearly.

5. Conclusions

This paper has shown how nonlinear Garch schemes can be effectively
Ž .employed to approximate stochastic differential equations SDE typically adopted

in finance as law of motion for the state variables. A practical application involved
the estimation of the objective and risk-neutral densities of the BTP futures price.

Ž .The objective PDF is obtained by first estimating a Power Arch 1,1 for the
log-changes of the BTP price and then evaluating the continuous time equivalent
of the estimated discrete time coefficients. Such parameters are then corrected via
the indirect inference principle and subsequently employed to simulate price paths
from the relevant SDE. The risk neutral density is simulated instead from the
relevant SDE, which has the same parameters as the objective density, but
includes a volatility risk premium which is a nonlinear function of the states
Ž .futures price and variability , whose parameters are chosen to fit observed cross
sections of option prices as closely as possible. We have shown that the closed

Ž .form relations of Nelson 1990 that provide the expression for the continuous
time parameters are a reasonable approximation of the limiting process. This

Ž .conclusion is more robust in the Power Arch 1,1 case, confirming the results
Ž .obtained in a related work Fornari and Mele, 2000a . This implies that in

principle, one can employ daily data to recover the parameters according to which
prices evolve in continuous time. We have determined the shape of the absolute
risk aversion of market participants to BTP futures trading and have shown that
risk averse behavior may emerge for out and in-the-money strike prices. This also
provides information about economic agents’ willingness to risk. With regard to
the measurement of Value-at-Risk, we have shown that if economic agents rely on
the Black and Scholes assumptions, insuring against the occurrence of a given
state may be difficult.
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