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This paper introduces a new class of parameter estimators for dynamic models, called simulated
non-parametric estimators (SNEs). The SNE minimizes appropriate distances between non-parametric
conditional (or joint) densities estimated from sample data and non-parametric conditional (or joint) den-
sities estimated from data simulated out of the model of interest. Sample data and model-simulated data
are smoothed with the same kernel, which considerably simplifies bandwidth selection for the purpose
of implementing the estimator. Furthermore, the SNE displays the same asymptotic efficiency properties
as the maximum-likelihood estimator as soon as the model is Markov in the observable variables. The
methods introduced in this paper are fairly simple to implement, and possess finite sample properties that
are well approximated by the asymptotic theory. We illustrate these features within typical estimation
problems that arise in financial economics.

1. INTRODUCTION

This paper introduces a new class of parameter estimators for dynamic models with possibly
unobserved components, called simulated non-parametric estimators (hereafter SNEs). The SNE
aims to minimize measures of distance between the finite-dimensional distributions of the model’s
observables and their empirical counterparts estimated through standard non-parametric tech-
niques. Since the distribution of the model’s observables is, in general, analytically intractable,
we recover it through two steps. In the first step, we simulate the model of interest. In the second
step, we obtain the model’s density estimates through the application of the same non-parametric
devices used to smooth the sample data. The result is a consistent and root-T asymptotically
normal estimator displaying a number of attractive properties. First, our estimator is based on
simulations; thus, it can be employed to cope with a large variety of estimation problems. Second,
the SNE minimizes distances of densities smoothed with the same kernel; therefore, up to iden-
tifiability, it is consistent, regardless of the smoothing parameter behaviour. Third, if the SNE is
taken to match conditional densities and the model is Markov in the observables, it achieves the
same asymptotic efficiency as the maximum-likelihood estimator (MLE). Finally, Monte Carlo
experiments reveal that our estimator exhibits a proper finite sample behaviour.

Models with unobserved components arise naturally in many areas of economics. Examples
in macroeconomics include models of stochastic growth with human capital and/or sunspots, job
duration models, or models of investment-specific technological changes. Examples in finance
include latent factor models, continuous-time Markov chains, and even scalar diffusions.

As is well known, the major difficulty in estimating dynamic models with unobserved
components relates to the complexity of evaluating the criterion functions. A natural remedy

413



414 REVIEW OF ECONOMIC STUDIES

to this difficulty is to make use of simulation-based methods. The simulated method of moments
(McFadden, 1989; Pakes and Pollard, 1989; Lee and Ingram, 1991; Duffie and Singleton, 1993),
the simulated pseudo-maximum likelihood method of Laroque and Salanié (1989, 1993, 1994),
the indirect inference approach of Gouriéroux, Monfort and Renault (1993) and Smith (1993)
and the efficient method of moments of Gallant and Tauchen (1996) are the first attempts to
address this problem through extensions of the generalized method of moments. The main char-
acteristic of these approaches is that they are general purpose. Their drawback is that unless
the true score belongs to the span of the moment conditions, they lead to asymptotically inef-
ficient estimators, even in the case of fully observed systems (see Carrasco and Florens, 2004;
and the early discussion in Tauchen, 1997). There exist alternative simulation-based econometric
methods, which directly approximate the likelihood function through simulations (e.g. Lee, 1995;
or Hajivassiliou and McFadden, 1998). These methods lead to asymptotic efficiency, but they are
typically designed to address specific estimation problems.

This article belongs to a new strand of the literature in search for estimators combining the
attractive features of both moment matching approaches and the MLE. Fermanian and Salanié
(2004) and Carrasco, Chernov, Florens and Ghysels (2006) are two particularly important contri-
butions in this area. Fermanian and Salanié (2004) introduce a general-purpose method in which
the likelihood function is approximated by kernel estimates obtained through simulations of the
model of interest. The resulting estimator, called the non-parametric simulated maximum like-
lihood (NPSML) estimator, is then both consistent and asymptotically efficient as the smoothing
parameter goes to 0 at some typical convergence rate. Carrasco et al. (2006) develop a general
estimation technology, which also leads to asymptotic efficiency in the case of fully observed
Markov processes. Their method leads to a “continuum of moment conditions” matching model-
based (simulated) characteristic functions to data-based characteristic functions. In the following,
we illustrate the distinctive features of our approach within a scalar model and contrast it to the
other approaches in the literature.

1.1. Density matching, “twin-smoothing”, and the simulated non-parametric estimators

Let {yt }T
t=1 be a sample of data of size T , generated by some conditional law with continuous

support. For the purpose of introducing the basic ideas underlying our estimator, we initially
discuss a simple case, arising when the goal of the estimator is to calibrate model-based marginal
densities to their empirical counterparts. Accordingly, let π(·; θ0) be the marginal density of yt ,
where θ0 denotes the true parameter value, a point in some parameter set �. Let πT (y) be a non-
parametric estimator of π(y; θ0), obtained as πT (y) ≡ (T λT )−1∑T

t=1 K ((yt − y)/λT ), where λT

is a bandwidth sequence and K is a symmetric kernel.
Our estimation methodology is related to the classical literature on minimum disparity es-

timators and goodness-of-fit tests. Consider the following general measure of distance between
the two densities πT (·; θ) and πT (·),

MT (θ) =
∫

D(π(y; θ),πT (y))wT (y)dy, (1)

where for each y and θ , the function D(π(y; θ),πT (y)) determines how close the model’s density
π(y; θ) is to πT (y), wT (y) is a weighting function possibly dependent on the data, and, finally,
the integral is taken over the domain of yt .

The criterion MT (θ) in (1) forms the basis for a variety of estimation and testing approaches.
Perhaps one of the best known approaches hinges on the goodness-of-fit tests initiated by Bickel
and Rosenblatt (1973). These tests typically rely on the empirical distance MT (θ) obtained with
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D(π,πT ) = (π −πT )2, that is,

IT (θ) =
∫

[π(y; θ)−πT (y)]2wT (y)dy, (2)

where a common choice for the weighting function is wT (y) = πT (y).1 The tests, then, are based
on IT (θ̂), where θ̂ is some consistent estimator of θ0. Alternatively, it has been noted that the
empirical distance in (2) can be utilized to estimate the unknown parameter vector θ0. Notably,
Aït-Sahalia (1996) defined an estimator minimizing (2) in the context of scalar diffusions. He
used a weighting function wT (y) = πT (y) to compute the following disparity estimator,

θ I
T = argmin

θ∈�
IT (θ). (3)

Other examples of distance functions D(π,πT ) in the literature relate to the family of power
divergence measures introduced by Cressie and Read (1984) in the context of discrete distribu-
tions. In the continuous framework we consider, the Cressie–Read criteria are obtained by using
D(π,πT ) = [(πT /π)φ −1]/(φ2 +φ) and wT (y) = πT (y), where φ is a constant.2

In this paper, we consider estimators, which are related to the minimization of the quadratic
functional IT (θ) in (2). A remarkable feature of IT (θ) is that a parametric density, π(·; θ), is
matched to a non-parametric density estimate, πT (·). For a fixed bandwidth value λT ≡ λ̄ > 0
(say), πT (y) converges pointwise in probability to,

π∗(y; θ0, λ̄) ≡ λ̄−1 E[K ((yt − y)/λ̄)] = λ̄−1
∫

K ((u − y)/λ̄)π(u; θ0)du.

As is well known, πT (y) converges pointwise in probability to π(y; θ0) if the bandwidth sat-
isfies: (i) λT → 0 and (ii) T λT → ∞. Therefore, bandwidth choice is critical for both consistency
and the finite sample behaviour of θ I

T in (3).
A natural alternative to (2) is an empirical measure of distance in which the non-parametric

estimate πT (·) is matched by the model’s density smoothed with the same kernel and bandwidth,

LT (θ) =
∫

[π∗(y; θ,λT )−πT (y)]2wT (y)dy. (4)

In terms of the empirical measure of distance (1), this alternative criterion replaces the
distance function D(π(y; θ),πT (y)) in (1) with D(π∗(y; θ,λT ),πT (y)), where D(π∗,πT ) =
(π∗ −πT )2. Fan (1994) developed bias-corrected goodness-of-fit tests based on the previous em-
pirical distance and weighting function wT (y) ≡ 1. Härdle and Mammen (1993) devised a similar
bias-correction procedure for testing the closeness of a parametric regression function to a non-
parametric one.

Our main idea is to combine the appealing features of the estimator θ I
T in (3) with the

bias-corrected empirical measure LT (θ) in (4). Precisely, consider an estimator minimizing the
distance in (4) rather than in (2), namely

θ L
T = argmin

θ∈�
LT (θ). (5)

1. Other choices in the literature include wT (y) = 1 (see, for example, Pagan and Ullah, 1999 for a survey), or
refer to discrete weightings, which lead to criteria cast in terms of sums, not integrals as in (1) or (2). See, for example,
Imbens, Spady and Johnson (1998) or, for more recent work, Antoine, Bonnal and Renault (2007).

2. For example, the criterion MT (θ) in (1) collapses to (i) Neyman’s χ2, for φ = −2; (ii) the Kullback–Leibler
distance, for φ = −1; (iii) Hellinger’s distance, for φ = − 1

2 ; (iv) the likelihood disparity, for φ = 0; and (v) the Pearson’s
χ2 distance, for φ = 1.
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In (4), kernel smoothing acts in the same manner on both the model-implied density and the
data-based density estimate. Therefore, bandwidth conditions affect the two estimators θ I

T and
θ L

T in a quite different manner. In particular, the criterion in (4) is bias corrected by construction;
hence, consistency of θ L

T holds independently of the bandwidth behaviour, up to identifiability
and regularity conditions.

We extend these basic insights to more general settings. We make two additional innova-
tions. First, we consider conditional densities, not simply marginal densities as in (4). Second,
we accommodate situations in which the analytical solution for such conditional densities is un-
known or difficult to compute.

To illustrate our approach, consider again our introductory example, and suppose that yt is
generated by yt+1 = f (yt ,εt+1; θ0), where the transition function f is known, and εt is a se-
quence of independent and identically distributed random variables with known distribution. As-
sume that for each θ , it is possible to simulate S paths of length T of yt , by iterating the equation
yi

t+1(θ) = f (yi
t (θ), ε̃i

t+1; θ), where for a given simulation i ∈ {1, . . . , S}, and some initial value
y0, {ε̃i

t }T
t=1 is a sequence of draws from the distribution of εt . Consider the joint density estimate

on sample data, yt , πT (y′, y) ≡ (T λ2
T )−1∑T

t=2 K2((yt − y′)/λT , (yt−1 − y)/λT ), where K2 is
a symmetric bivariate kernel. Likewise, let π i

T (y′, y; θ) and π i
T (y; θ) be the joint and marginal

density estimates on the simulated data, yi
t (θ), computed with the same kernels and bandwidth

used to estimate the joint and marginal densities on sample data.
Our estimator aims to match the conditional density obtained with simulated data to their

sample counterpart, as follows:

θT,S = argmin
θ∈�

∫∫ [
1

S

S∑
i=1

π i
T (y′ | y; θ)−πT (y′ | y)

]2

wT (y′, y)dy′dy, (6)

where wT (y′, y) is a weighting function, and where the conditional densities are estimated as
ratios of joint over marginal density estimates, that is, πT (y′ | y) ≡ πT (y′, y)/πT (y) and π i

T (y′ |
y; θ) ≡ π i

T (y′, y; θ)/π i
T (y; θ).

The important property of the estimator θT,S in (6) is that the conditional density estimates
πT (y′ | y) and π i

T (y′ | y; θ) are computed with the same kernels and bandwidth. This “twin-
smoothing” property is the conditional density counterpart to the kernel-smoothing device in (4),
and eliminates asymptotic biases affecting non-parametric density estimates. Indeed, we show
that the bandwidth behaviour is not critical for consistency of θT,S , and that θT,S does not suffer
from finite sample bias, even for simple choices of the bandwidth.

Instead, the bandwidth behaviour affects the precision of our estimator. We show that by
an appropriate choice of the weighting function wT (y′, y) in (6), θT,S can be asymptotically as
efficient as the MLE, as soon as the bandwidth goes to 0 at some appropriate rate. Intuitively,
we require the bandwidth to go to 0 in order to match, asymptotically, the model’s conditional
density to the true conditional density of yt . This matching, and the particular weighting function
we shall use, make the estimator asymptotically equivalent to (a linear function of) the true score,
as we shall show.

The computational aspects of our estimator are useful to mention. First, the criterion in (6)
can be evaluated through Monte Carlo integration, which avoids using integration quadratures.
This attractive feature of the estimator extends to the general case we consider in this paper (esti-
mation of multidimensional models with possibly unobservable variables), in which the criterion
functions involve integrals of dimension larger than that in (6). Second, we shall explain, and
our Monte Carlo experiments confirm, that the computational burden arising in multivariate set-
tings can be further reduced, with a loss in efficiency, when the estimator is taken to match the
conditional densities of the single elements of the observable variables.
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1.2. Related literature

By construction, our estimation approach is not meant to approximate the likelihood function.
Rather, we develop a class of simulation-based criterion functions (that in equation (6)), which
generalizes a classical measure of distance between marginal densities (the quadratic functionals
in equations (2) and (4)) to a setting of conditional densities. Thus, albeit based on simulations,
our estimation strategy is distinct from the NPSML methodology introduced by Fermanian and
Salanié (2004) and also considered by Kristensen and Shin (2006). Our approach also differs
from that of Carrasco et al. (2006). Indeed, we also rely on a “continuum of moments” in (6);
at the same time, we match model-based density estimates (not characteristic functions) to their
empirical counterparts. Finally, the twin-smoothing procedure in (6) further differentiates our
approach from those in these papers.

The twin-smoothing procedure is intimately related to the general indirect inference strategy
put forward in the seminal papers of Gouriéroux et al. (1993) and Smith (1993). In the language
of indirect inference, we are calibrating the parameter of interest θ by matching a model-implied
(infinite-dimensional) “auxiliary” parameter (i.e. 1

S

∑S
i=1 π i

T (y′ | y; θ)) to the corresponding pa-
rameter computed on sample data (i.e. πT (y′ | y)). In principle, both of these “auxiliary” param-
eters might be estimated with an arbitrary bandwidth choice. Indeed, the important point is that
the two “auxiliary” parameters be estimated with the same kernel and bandwidth. In this case,
and up to identifiability, our estimator θT,S in (6) is still consistent, as we would expect it to be
by the logic underlying indirect inference.

Our basic ideas are also related to the kernel-based indirect inference approach developed
by Billio and Monfort (2003). The Billio–Monfort estimator matches conditional expectations of
arbitrary test functions estimated through the same kernel method—one conditional expectation
computed on sample data and one conditional expectation computed on simulated data. Like
our estimator, their estimator is not affected by any asymptotic bias. One important difference
between our estimator and the Billio–Monfort estimator is that ours is asymptotic normal at the
usual parametric rate, and it can be asymptotically as efficient as the MLE. Instead, the rate of
convergence of the Billio–Monfort estimator is contaminated by the rate of convergence of their
bandwidth sequence to 0, although this rate can be made arbitrarily slow. Intuitively, the Billio–
Monfort estimator matches a finite number of test functions. Instead, our estimator θT,S in (6),
like Aït-Sahalia’s (1996) estimator (3), can be understood as a device to match a continuum of
moment conditions. The integration step over such a continuum of moment conditions eliminates
the effect of the bandwidth on the rate of convergence of θT,S in (6).

Aït-Sahalia (1996) is one additional fundamental contribution, which this article is clearly
related to. Aït-Sahalia developed a minimum distance estimator, that in equation (3), for which
the measure of distance is, asymptotically, a special case of the general class of measures of
distance we consider here. Our estimator, however, is different for three additional important
reasons. First, Aït-Sahalia’s estimator is affected by an asymptotic bias, which, instead, does not
arise within the class of our estimators, due to our twin-smoothing device. Second, Aït-Sahalia’s
estimator only matches marginal densities. Third, our conditional-density based estimator in (6)
can lead to asymptotic efficiency.

Our focus on matching density functions is also related to the “effective calibration” strategy
of Gallant (2001). The main difference is that Gallant’s estimator matches cumulative distribution
functions, and it does not lead to asymptotic efficiency. The advantage of focusing on density
functions is that it allows us to address efficiency issues.

Finally, we note that Hong and White (2005) have recently made use of a twin smoothing
trick similar to ours to estimate joint and marginal densities in the context of non-parametric
entropy measures of serial dependence. This trick leads to fairly weak bandwidth conditions and
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a faster convergence rate for their entropy estimator. Aït-Sahalia, Fan and Peng (2005) have also
recently used a device similar to ours to reduce the bias of non-parametric goodness-of-fit tests
for scalar diffusion models. Naturally, the focus of these two papers is radically different from
our focus to provide parameter estimators for dynamic models.

The rest of the paper is organized in the following manner. Section 2 introduces our simu-
lated non-parametric estimators in detail. Section 3 provides the large sample theory. Section 4
assesses finite sample properties. Section 5 concludes.

A word on notation: For any Rd -valued variable X , we use ‖X‖ to denote the Euclidean
norm and |X |2 to denote the outer product. All the integrals are taken on the real coordinate space.
We use the double integral notation

∫∫
in the context of conditional density matching, as in (6).

We use the notation
∫

in the context of joint density matching, and in all remaining contexts.

2. SIMULATED NON-PARAMETRIC ESTIMATORS

2.1. The model of interest

Let � ⊂ Rn be a compact parameter set and, for a given parameter vector θ0 in the interior of �,
consider the following data generating process:

yt+1 = f (yt ,εt+1; θ0), t = 0,1, . . . , (7)

where yt ∈ Rd , f is known and εt is a sequence of Rd -valued independent and identically
distributed random variables with known distribution. The purpose of this paper is to provide
estimators of the true parameter vector θ0.

We consider a general situation in which some components of yt are not observed. Accord-
ingly, we partition the vector yt as yt ≡ [yo

t , yu
t ], where yo

t ∈ Rq∗
is the vector of the observable

variables, and yu
t ∈ Rd−q∗

is the vector of the unobservable variables. Since our general interest
lies in the estimation of partially observed processes, we may wish to recover as much informa-
tion as possible about the dependence structure of the observables in (7). Thus, we stack yo

t and
l lagged values of yo

t into a vector xt ∈ Rq , with q = q∗(1+ l), where

xt ≡ [yo
t , · · · , yo

t−l ], t = 1+ l, . . . ,T . (8)

In practice, there is a clear trade-off between increasing the lag length l and both speed
of computations and the curse of dimensionality. In Section 2.3, we succinctly present a few
practical devices on how to cope with the curse of dimensionality. Finally, for each t , we partition
xt as xt = [zt ,vt ], where zt ≡ yo

t ∈ Rq∗
is the vector of the observable variables at time t , and

vt ∈ Rq−q∗
is the vector of predetermined variables,

vt ≡ [yo
t−1, · · · , yo

t−l ], t = 1+ l, . . . ,T . (9)

Throughout the paper, we let π2(x ; θ0) ≡ π2(z,v ; θ0) denote the joint density induced by
(7) on (8); π1(v ; θ0) the joint density of the predetermined variables in (9); and π(z | v; θ0) the
conditional density of zt given vt .

2.2. Conditional density SNE

Consider a non-parametric estimator of the joint density π2(x ; θ0), obtained as π2T (x) ≡
(T λ

q
T )−1∑T

t=1+l Kq((xt − x)/λT ) where Kq is a q-dimensional, r-th order, symmetric kernel,3

3. A symmetric kernel K is a symmetric function around 0 that integrates to 1. It is said to be of the r -th
order if (i) ∀µ ∈ Nq : |µ| ∈ {1, · · · ,r − 1}, |µ| ≡ ∑q

j=1 µ j ,
∫

u
µ1
1 · · ·uµq

q K (u)du = 0; (ii) ∃µ ∈ Nq : |µ| = r and∫
u
µ1
1 · · ·uµq

q K (u)du �= 0; and (iii)
∫ ‖u‖r K (u)du < ∞.
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and λT is the bandwidth function. Similarly, estimate the joint density of the predetermined vari-
ables π1(v ; θ0) as π1T (v) ≡ (T λ

q−q∗
T )−1∑T

t=1+l Kq−q∗((vt − v)/λT ). Let

πT (z | v) ≡ π2T (z,v)

π1T (v)
(10)

be an estimate of the conditional density of the observed variables zt given the predetermined
variables vt .

Our estimator aims to match the model-implied conditional density to the conditional den-
sity πT (z | v) estimated from sample data. The first step of our estimation strategy requires
simulated paths of the observable variables in (7). To generate S simulated paths for a given
parameter value θ and some initial point y0, we compute recursively,

yi
t+1(θ) = f (yi

t (θ), ε̃i
t+1; θ), t = 0,1, . . . ,T, for i = 1, . . . , S,

where for each simulation i , {ε̃i
t }T

t=1 is a sequence of random numbers drawn from the distribution
of εt . Let xi

t (θ) and v i
t (θ) be the simulated counterparts to xt and vt in (8) and (9), when the

parameter vector is θ . Define π i
2T (x ; θ) ≡ (T λ

q
T )−1∑T

t=1+l Kq((xi
t (θ)−x)/λT ) and π i

1T (v ; θ) ≡
(T λ

q−q∗
T )−1∑T

t=1+l Kq−q∗((v i
t (θ)−v)/λT ), where Kq , Kq−q∗ and λT are the same kernels and

bandwidth used to compute πT (z | v) in (10). We estimate the conditional density on simulated
data for a given parameter value θ as an average of the simulated ratios of joint over marginal
densities,

πT,S(z | v; θ) ≡ 1

S

S∑
i=1

π i
2T (z,v ; θ)

π i
1T (v ; θ)

, i = 1, . . . , S. (11)

We are now in a position to provide the definition of our estimator:

Definition 1. (CD-SNE) For each fixed S, the Conditional Density SNE (CD-SNE) is the
sequence {θT,S}T given by:

θT,S = argmin
θ∈�

LCD
T,S(θ)

≡ argmin
θ∈�

∫∫
[πT,S(z | v; θ)−πT (z | v)]2wT (z,v)T2

T,S(v ; θ)dzdv, (12)

where {wT(z,v)}T is a sequence of positive weighting functions; and for each θ∈�,{TT,S(v ; θ)}T

is a sequence of positive trimming functions depending on the simulations.

The objective function in (12) involves a weighting function wT (z,v) and also a trimming
function TT,S(v ; θ). The role of the weighting function is to literally weight the distance of the
conditional densities πT,S(z | v; θ) and πT (z | v) at all the points (z,v). For instance, if wT (z,v) =
π2T (z,v), the CD-SNE overweights discrepancies occurring where observed data have more
mass. In Section 3, we will indicate when and how the CD-SNE can be made asymptotically
efficient with a proper choice of the weighting function wT (z,v).

The trimming function TT,S(v ; θ) plays instead a merely technical role. The CD-SNE relies
on non-parametric conditional density estimates obtained as ratios between joint over marginal
density estimates. Small values of the denominators in (10)–(11) may hinder the numerical stabil-
ity of the estimator and the asymptotic theory. Therefore, we need to control the tail behaviour of
the marginal density estimates π1T (v) and π i

1T (v ; θ). The role of TT,S(v ; θ) is to trim small val-
ues of these marginal density estimates. A similar “denominator” problem arises in many related
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contexts, and is addressed by means of trimming functions (see, for example, Andrews, 1995;
Ai, 1997; Fermanian and Salanié, 2004; Kitamura, Tripathi and Ahn, 2004). We defer to Section
3 a careful and complete description of the regularity conditions on TT,S(v ; θ) (see Assumptions
8–10). At this juncture, we simply note that TT,S(v ; θ) also depends on the parameter θ being
used to evaluate the criterion in (12). This is because the tails of the marginal density estimates
on simulated data {π i

1T (v ; θ)}S
i=1 obviously depend on the parameter vector θ used to produce

the simulations.

2.3. The curse of dimensionality

Estimators relying on non-parametric methods are subject to two well-known critiques. A first
critique relates to the difficulty to properly deal with density estimation in high dimension when
the sample size is small, as in the famous “empty space phenomenon” described by Silverman
(1986, Section 4.5). A second critique stems from the mere computational burden of using kernel
methods in high dimension. For example, the numerical integration underlying the CD-SNE can
be computationally costly when q, the dimension of xt in (8), is large.

As regards the first critique, note that by design, and consistently with the indirect inference
principle, the CD-SNE aims to make a model mimic the sample properties of an “auxiliary”
infinite dimensional parameter, that is, a conditional density. Hence, the “twin-smoothing” device
underlying the criterion in (12) is such that the biases in the model-implied density estimate
and its empirical counterpart cancel out each other. As we shall show, this makes the CD-SNE
consistent independently of how well we are able to estimate the two densities.

A standard but convenient way to address the second critique is to use Monte Carlo in-
tegration, and compute the objective functions through sample averages, rather than through
integration quadratures. In this manner, a q-dimensional Riemann integral is approximated by
a one-dimensional sum over kernel density estimates evaluated at the sample points. Even with
integration quadratures, one can still reduce the computational burden, with a loss in efficiency.
For example, the computational burden related to the lag l in (8) can be reduced by matching the
conditional densities of the individual elements of xt , as follows:

θ̂T,S = argmin
θ∈�

l∑
k=1

∫
R2q∗

[πT,S(yo | yo−k ; θ)−πT (yo | yo−k)]
2
T

2
T,S(yo−k ; θ)wT (yo, yo−k)dyodyo−k,

(13)

where πT (yo | yo−k) is the estimate of the conditional density of two observations that are k
lags apart in (8), πT,S(yo | yo−k ; θ) is its simulated counterpart, and TT,S(yo−k ; θ) is a trimming
function.

This estimator is similar to the CD-SNE in Definition 1, but can be implemented with a
number l of 2q∗-dimensional integrations, instead of a single q-dimensional integration, q =
q∗(1 + l). In proposing the above estimator, we imitated Fermanian and Salanié (2004, section
4) and Singleton (2006, section 5.7), who suggested “splits” similar to those in (13) to address
dimensionality issues in the context of their estimators. In tests involving stochastic volatility
models, we found that the CD-SNE computed with l = 1 (i.e. the CD-SNE matching the condi-
tional density of two adjacent observations) has a proper finite sample behaviour (see Section 4).
In the remainder, we develop the asymptotic properties of the CD-SNE in Definition 1, and leave
the details of the asymptotics of the estimator θ̂T,S in (13) in Appendix C. Dimensionality issues
related to the spatial dimension q∗ can be mitigated in the same vein.4

4. For example, a possible estimator extending the CD-SNE could match the estimates of two-dimensional condi-
tional densities of every single pair of observables, rather than the estimates of 2q∗-dimensional densities.

c© 2009 The Review of Economic Studies Limited



ALTISSIMO & MELE NON-PARAMETRIC ESTIMATION OF DYNAMIC MODELS 421

3. LARGE SAMPLE THEORY

3.1. Regularity conditions

This section collects the regularity conditions we need to develop the asymptotic theory for the
CD-SNE. Our first assumptions further characterize the family of models underlying the data
generating process in (7).

Assumption 1. (a) For all z,v,θ ∈Rq∗ ×Rq−q∗ ×�, π(z | v; θ), π2(z,v ; θ) and π1(v ; θ)
are bounded, and continuous in all their arguments. (b) For all z,v,θ ∈ Rq∗ ×Rq−q∗ ×�, π(z |
v; θ), π2(z,v ; θ) and π1(v ; θ) are twice continuously differentiable with respect to θ , and their
derivatives up to the second order with respect to θ are bounded. Furthermore, for all y,ε,θ ∈
R

d ×Rd ×�, f (y,ε; θ) is continuous and twice continuously differentiable with respect to θ .

Assumption 2. The vector-valued process yt in (7) is a Markov β-mixing sequence with
mixing coefficients βk satisfying limk→∞ kµβk → 0, for some µ > 1.

Assumption 1(a) (resp. 1(b)) is needed to prove consistency (resp. asymptotic normality)
of our estimators. Assumption 2 imposes restrictions on the data dependence and is needed for
the application of an empirical process central limit theorem (Arcones and Yu, 1994) to density
kernel estimates. The next assumption lists the basic regularity conditions on the kernel functions.

Assumption 3. The kernels Kq and Kq−q∗ are of the same order r , bounded, symmetric,
and continuously differentiable with bounded derivatives up to the second order. Moreover, they
are absolutely integrable with an absolutely integrable Fourier transform.

Assumption 3 is needed to use and extend Andrews’ (1995) results on the uniform conver-
gence of density estimates and their derivatives. These results are of critical importance for both
consistency and asymptotic normality, as we shall highlight below.5

We now introduce notation and regularity conditions related to the asymptotic behaviour of
the criterion function in (12). First, we define the limiting bandwidth value λ̄ : λT → λ̄, and the
pointwise probability limits, for fixed S and θ , and T λ

q
T → ∞,

π∗
2 (z,v ; θ, λ̄) ≡ plim

T →∞
π2T,S(z,v ; θ), π∗

1 (v ; θ, λ̄) ≡ plim
T →∞

π1T,S(v ; θ). (14)

It is well known (e.g. Pagan and Ullah, 1999) that given Assumptions 1–3, these probability
limits collapse to the joint densities π2(z,v ; θ) and π1(v ; θ), once we let λT → 0.

Second, we define,

LCD(θ, λ̄) ≡
∫∫

[π∗(z | v; θ, λ̄)−π∗(z | v; θ0, λ̄)]2w(z,v)dzdv, π∗(z | v; θ, λ̄) ≡ π∗
2 (z,v ; θ, λ̄)

π∗
1 (v ; θ, λ̄)

,

(15)

where w(z,v) is the probability limit of the weighting function wT (z,v) in (12), as formalized
by the following assumption.

Assumption 4. (a) The sequence of functions {wT (z,v)}T is bounded and integrable,
and converges in probability pointwise to some function w(z,v) as T → ∞, where the limiting

5. Precisely, Assumption 3 is needed to prove Lemmas C1–C3 and Lemmas N1–N5 in the appendices through
Andrews’ (1995) strategy of proof.
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function w(z,v) is bounded and integrable. (b) We have, sup(z,v)∈Rq∗×Rq−q∗ |wT (z,v)−w(z,v)|=
Op(T − 1

2 λ
−q
T )+ Op(λ

r
T ).

Assumption 4(a), combined with Assumptions 1(a), 2, 3, and additional regularity condi-
tions on the trimming functionTT,S(v ; θ) (stated below), ensures that LCD(θ, λ̄) is the probability
limit of LCD

T,S(θ), for fixed θ , a key ingredient for the consistency of the CD-SNE. Assumption
4(b), instead, contains a high level condition we use to show asymptotic normality of the CD-
SNE. This condition is satisfied, for example, by wT (z,v) = πT (z,v).

We assume that the objective function LCD
T,S(θ) in (12) and the limiting objective function

LCD(θ, λ̄) in (15) satisfy the following regularity and identifiability conditions:

Assumption 5. For all θ ∈ �, LCD
T,S(θ) is measurable and continuous on �. Moreover, the

function π∗(z | v; θ, λ̄) in (15) is bounded, LCD(θ, λ̄) is bounded and continuous on �, and there
exists a unique θ0 in the interior of � such that LCD(θ, λ̄) = 0 implies that θ = θ0.

The first part of Assumption 5 contains standard regularity conditions that ensure the ex-
istence of the CD-SNE. The identification condition in the second part of this assumption is
critical. It requires that the “auxiliary” parameter π∗(z | v; θ, λ̄) in (15) has information con-
tent on the “structural” parameter θ , possibly for all the points (z,v), and can equivalently be
stated in terms of the limiting bandwidth λ̄, as follows: λ̄ : sup(z,v)∈Rq∗×Rq−q∗ |π∗(z | v; θ, λ̄)−
π∗(z | v; θ0, λ̄)| = 0 
⇒ θ = θ0. For example, if the probability limits in (14) are such that
π∗

2 (z,v ; θ, λ̄) = π2(z,v ; θ) and π∗
1 (v ; θ0, λ̄) = π1(v ; θ), then, this condition collapses to a stan-

dard identifiability condition for the conditional density of z given v .
More generally, the previous condition needs not to be satisfied in some special cases, arising

when the limiting bandwidth is larger than the support of the data. Consider the following
counterexample. Suppose that yt is independent and identically distributed and that y ∈ Y ⊂ R,
where Y is a compact set. Consider the uniform kernel with support [−1,1], K (y) ≡ 1

2 I|y|≤1,
where I is the indicator function. In this case, the identification condition is LY (θ, λ̄) = 0 
⇒
θ = θ0, where, for some weighting function w(y),

LY (θ, λ̄) ≡
∫

y∈Y

[π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄)]2w(y)dy,

and, by simple computations,

π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄) = 1

2λ̄

∫
ξ∈Y

I|y−ξ |≤λ̄[π1(ξ ; θ)−π1(ξ ; θ0)]dξ. (16)

With λ̄ large enough, we have that I|y−ξ |≤λ̄ = 1 for all (y,ξ) ∈ Y × Y , which implies that
LY (θ) = 0 for all θ ∈ �.

The previous situation does not necessarily arise if the support of the data is R. Indeed, if
the data have unbounded support and the kernel is uniform, then

π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄) = 1

2λ̄

y+λ̄∫
y−λ̄

[π1(ξ ; θ)−π1(ξ ; θ0)]dξ. (17)

Note the role that unbounded support plays here. Indeed, and unless λ̄ = ∞, the R.H.S. in
(17) is not identically 0, as it is instead the case in (16), when λ̄ is large enough. In this example,
identification occurs if λ̄ : supy∈R |π∗

1 (y; θ, λ̄)−π∗
1 (y; θ0, λ̄)| = 0 
⇒ θ = θ0.
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In Appendix A.2, we develop one example in which identification occurs, when yt is
Gaussian, the kernel is still uniform, and the limiting bandwidth λ̄ is non-zero. Appendix A.2
provides one additional example in which identifiability occurs with sufficiently small values of
λ̄, even when data have bounded support.

To prove consistency of the CD-SNE, we need additional regularity conditions:

Assumption 6. There exists a c > 0 and a sequence {κT,S}T bounded in probability as T
becomes large such that for all (ϕ,θ) ∈ �×�, |LCD

T,S(ϕ)− LCD
T,S(θ)| ≤ κT,S‖ϕ − θ‖c.

Assumption 6 is a standard high level assumption we need to prove that LCD
T,S(θ) converges

to LCD(θ, λ̄), uniformly in θ . The following conditions are needed to Taylor-expand the first order
conditions satisfied by the CD-SNE and to ensure the uniform convergence of non-parametric
estimates of score functions to their asymptotic counterparts.

Assumption 7. (a) For all (x,θ) ∈ Rq × �, each element of |∇θ Kq((xi
t (θ) − x)/λT )|

and |∇θ Kq−q∗((v i
t (θ)− v)/λT )| exists, is continuous in θ , bounded with bounded gradient and

satisfies Assumption 2. (b) ∂ρ+1π2(x ; θ)/∂θ∂xρ and ∂ρ+1π1(v ; θ)/∂θ∂vρ are uniformly bounded
for some ρ ≥ r .

The next assumption specifies the trimming function we use to address the “denominator”
problems in (10) and (11):

Assumption 8. Let g be a bounded, twice continuously differentiable density function
with support [0,1], g(0) = g(1) = 0, and let gδ(u) ≡ 1

δ g( u
δ − 1).6 We set, in (12), TT,S(v ; θ) ≡

GδT (π1T (v))
∏S

i=1 GδT (π i
1T (v ; θ)), where GδT (�)≡∫ �

0 gδT (u)du, for some sequence δT :δT → 0.

Our formulation of the trimming function TT,S(v ; θ) is related to previous work by
Andrews (1995) and Ai (1997). By construction, this function has the following two fundamental
properties, holding for all θ : (i) TT,S(v ; θ) = 0 for all v such that π1T (v) < δT or π i

1T (v ; θ) < δT

(for at least one simulation i); and (ii) TT,S(v ; θ) = 1 for all v such that π1T (v) > 2δT and
π i

1T (v ; θ) > 2δT (for all the simulations i ∈ {1, . . . , S}). Hence, the function TT,S(v ; θ) trims
small values of the density estimates π1T (v) and π i

1T (v ; θ) on both sample and simulated data.

Finally, the condition that δT → 0 ensures that TT,S(v ; θ)
p→ 1 for all v and θ , thereby making

the trimming effects asymptotically negligible.7

In Assumption 9 below, we gather all the regularity conditions on the asymptotic behaviour
of the trimming sequence δT and the bandwidth sequence λT :

Assumption 9. As T → ∞,

(a) λT → λ̄, where 0 ≤ λ̄ < ∞, and T
1
2 λ

q
T δT → ∞;

(b) λT → 0, T
1
2 λ

q+1
T δ4

T → ∞, and δ−1
T λ

ψ
T → 0, where ψ ≡ min{q∗ +1, 1

5r}.

6. Let g(d) be the d-th order derivative of g, with g(0) ≡ g. By convention, the derivatives at the end points 0 and
1, g(d)(0) ≡ limx→0+ [g(d−1)(x)− g(d−1)(0)]/x and g(d)(1) ≡ limx→0− [g(d−1)(1+ x)− g(d−1)(1)]/x , for d = 1,2.

7. Another key property of this function is that it is twice continuously differentiable with respect to θ , which
allows expansion of the CD-SNE through Taylor series arguments. Linton and Xiao (2000) suggested the following
example of trimming function with a closed-form solution satisfying Assumption 8. Let the Beta density g(u) ∝ zk (1−
z)k , for some integer k; then Gδ(�) is a (2k +1)-polynomial in (�− δ)/δ.
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Assumption 9(a) contains conditions on the joint asymptotic behaviour of λT and δT that
ensure consistency of the CD-SNE. We require that δT do not decay too rapidly, that is, δT :
T

1
2 λ

q
T δT → ∞. We need this condition to ensure that the kernel estimate πT (z | v) = π2T (z,v)/

π1T (v) in (10) converges uniformly to its population counterpart π∗(z | v; θ0, λ̄) in (15), and over
sets of v on which the “denominator” π1T (v) is bounded away from 0. Moreover, we need a
“square-root-T” condition to ensure such a uniform convergence.8

Assumption 9(b) is needed to prove asymptotic normality of the CD-SNE. We require
that the bandwidth sequence λT converges to 0 at the “square-root-T” rate, in the sense that
T

1
2 λ

q+1
T δ4

T → ∞, and that it enters the square-root-T condition with a power of q + 1. These
two conditions are needed to ensure uniform convergence of non-parametric estimates of gra-
dient functions and in the case of Markov models, make the CD-SNE asymptotically as ef-
ficient as the MLE, as we shall explain in Section 3.3. The second part of Assumption 9(b)
imposes that the rate of decay for the trimming sequence δT be slower than in Assumption 9(a).
We need this condition as non-parametric estimates of gradient functions, ∇θπT,S(z | v; θ), in-
volve denominator problems that are more severe than those arising for consistency. Finally,
note that the order of the kernel r also plays a role. This is because we need to ensure that
estimates of density functions and score functions converge uniformly to true densities and
scores. The third part of Assumption 9(b) on the order of the kernel ensures that asymptotic
biases affecting non-parametric estimates of density and gradient functions are asymptotically
eliminated.

3.2. Consistency and asymptotic normality

This section establishes consistency and asymptotic normality of the CD-SNE. To develop intu-
ition about these asymptotic properties, let us consider the first order conditions satisfied by the
CD-SNE (see Appendix A.3, equation (A10)). Under the regularity conditions of Section 3.1,
these conditions can be Taylor-expanded around θ0 to yield,∫∫ √

T [πT,S(z | v; θ0)−πT (z | v)]∇θπT,S(z | v; θ0)wT (z,v)T2
T,S(v ; θ0)dzdv

+
[∫∫

|∇θπT,S(z | v; θ0)TT,S(v ; θ0)|2wT (z,v)dzdv

]√
T (θT,S − θ0) = op(1). (18)

Next, add and subtract the expectation E(π2T (z,v)) = E(π i
2T (z,v ; θ0)) in the numerators of

πT,S(z | v; θ0) and πT (z | v). Then, by lengthy but straightforward computations, the expansion
in (18) is, asymptotically,

−JT,S
√

T (θT,S − θ0) = 1

S

S∑
i=1

(I i
1T +I i

2T )− (I0
1T +I0

2T )+op(1), (19)

where

JT,S ≡
∫∫

|∇θπT,S(z | v; θ0)TT,S(v ; θ0)|2wT (z,v)dzdv (20)

8. See Appendix A, Remarks on the proof of Lemma C1, for the basic computations needed to establish these
uniform convergence results. Note that Bierens (1983, Section 5) originally developed the condition that

√
T λ

q
T → ∞

in the context of uniform consistency for kernel estimators of density and regressor functions. Our proofs use and extend
more general results developed by Andrews (1995, Theorem 1), and address uniform consistency for kernel estimators
of gradient functions as well as “denominator” problems.
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I i
1T ≡

∫∫
η(z,v)d Ai

T (z,v) and I i
2T ≡

∫
γ (v)d Ai

T (v), i = 0,1, . . . , S (21)

η(z,v) = ∇θπ(z | v; θ0)w(z,v)

π1(v ; θ0)
, γ (v) =

∫ ∇θπ(z | v; θ0)π2(z,v ; θ0)w(z,v)

π1(v ; θ0)2
dz (22)

and the integrands in (21) are defined as, d Ai
T (z,v) ≡ √

T [π i
2T (z,v ; θ0)− E(π i

2T (z,v ; θ0))]dzdv

and d Ai
T (v) ≡ √

T [π i
1T (v ; θ0)− E(π i

1T (v ; θ0))]dv , with π0
2T (z,v ; θ0) denoting the joint density

estimate π2T (z,v), and π0
1T (v ; θ0) denoting the marginal density estimate π1T (v).

By equation (19), then, the CD-SNE is root-T asymptotically normal if (i) the probability
limit of JT,S equals some positive definite constant matrix, and (ii) I i

1T and I i
2T are asymptoti-

cally normal. Precisely, we have:

Theorem 1. Let Assumptions 1(a), 2–3, 4(a), 5–6, 8, and 9(a) hold. Then, the CD-SNE
is (weakly) consistent. Furthermore, let ϒ(z,v) ≡ η(z,v) + γ (v), where η(z,v) and γ (v) are
defined in (22), and let E[‖ϒ(zt ,vt )‖ϑ ]1/ϑ < ∞, for some ϑ > 2. Suppose that the n ×n matrix
J = ∫∫ |∇θπ(z | v; θ0)|2w(z,v)dzdv is invertible. Then, under the additional Assumptions 1(b),
4(b), 7, and 9(b),

√
T (θT,S − θ0)

d→ N

(
0,

(
1+ 1

S

)
J −1VJ �−1

)
,

where V = var[ϒ(zt ,vt )]+∑∞
k=1{cov[ϒ(zt ,vt ),ϒ(zt+k,vt+k)]+cov[ϒ(zt+k,vt+k),ϒ(zt ,vt )]}.

To develop intuition about the asymptotic variance of the CD-SNE, note, first, that the matrix
J is the probability limit of JT,S in (20). To understand the expression for the matrix V , con-
sider the terms I0

1T and I0
2T in (21), and approximate A0

T (z,v) = √
T [F2T (z,v)− E(F2T (z,v))],

where F2T (z,v) = ∫ z
−∞

∫ v
−∞ π2T (s′,s)ds′ds, with Â0

T (z,v) ≡ √
T [F̂2T (x)− E(F̂2T (x))], where

F̂2T (x) = 1
T

∑T
t=1+l Ixt ≤x is the empirical cumulative distribution function of xt = [zt ,vt ], and

I is the indicator function. Similarly, let us approximate A0
T (v) with Â0

T (v) ≡ √
T [F̂1T (v) −

E(F̂1T (v))], where F̂1T (v) is the empirical cumulative distribution function of vt . Using these
approximations, we can replace the integrals in (21) with finite sums, obtaining:

I0
1T +I0

2T ≈ 1√
T

T∑
t=1+l

[η(zt ,vt )− E(η(zt ,vt ))]+ 1√
T

T∑
t=1+l

[γ (vt )− E(γ (vt ))]

≡ 1√
T

T∑
t=1+l

[ϒ(zt ,vt )− E(ϒ(zt ,vt ))], (23)

where ϒ(z,v) is as in Theorem 1. The same approximation can be made for the terms (I i
1T +

I i
2T ) arising from the S simulations in the asymptotic expansion (19). Therefore, given (19) and

the fact that the S simulation-based terms (I i
1T + I i

2T ) have the same distribution as (I0
1T +

I0
2T ), asymptotic normality and the variance terms in Theorem 1 follow, heuristically, by the
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independence of the simulations, by applying the central limit theorem to the R.H.S. of (23), and

by JT,S
P→ J .9

Finally, as for the indirect inference estimators, Theorem 1 requires that ST go to infinity in
such a way that for a fixed number of simulations S, the size T of every simulated sample goes
to infinity. Hence, the variance of the CD-SNE depends on the scaling term (1 + S−1), as in the
familiar asymptotics of the indirect inference estimators (e.g. Gouriéroux et al., 1993).

3.3. Efficiency

By focusing on conditional densities, the CD-SNE provides a simple and appealing means to
match the statistical properties of a dynamic model to those of the data, even in the presence
of latent variables. The purpose of this section is to analyze when and how the CD-SNE can be
asymptotically as efficient as the MLE.

It is well known that in the context of independent observations, certain minimum dispar-
ity estimators retain efficiency properties. For example, all the estimators encompassed by the
Cressie and Read (1984) divergence measures mentioned in the Introduction are first-order ef-
ficient, although they may differ in terms of second-order efficiency, and robustness (see, for
example, Beran, 1977; Lindsay, 1994). In fact, there is an interesting connection between the es-
timators minimizing the Cressie–Read divergence measures and the CD-SNE in (12). Consider
the limiting criterion LCD in (15), with: (i) the probability limit π∗(z | v; θ, λ̄) = π(z | v; θ), (ii)
the following limiting weighting function,

w(z,v) = π1(v ; θ0)
2

π2(z,v ; θ0)
, (24)

and, finally, (iii) yt observable, or (zt ,vt ) = (yt , yt−1). Then, by a straight forward computation,
the limiting criterion of the CD-SNE can be written as:

E

[
π(yt |yt−1; θ)

π(yt |yt−1; θ0)
−1

]2

. (25)

This criterion is, asymptotically, the conditional density counterpart to the Neyman’s χ2

measure of distance for marginal densities, which is a special case of the Cressie–Read diver-
gence measures.10

Armed with this intuition about Neyman’s χ2, we now develop additional heuristic details
about the asymptotic properties of the CD-SNE, when the asymptotic criterion is as in (25).
Consider the expansion in (19). We are looking for a weighting function wT (z,v) such that: (i)
asymptotically, the term T − 1

2 (I i
1T +I i

2T ) behaves as the score, and (ii) the matrixJT,S converges
in probability to the Fisher’s information matrix. Let us consider, then, the limiting weighting
function (24). By replacing (24) into the definition of η(z,v) and γ (v) in (22), we obtain

η(z,v) = ∇θ logπ(z | v; θ0), and γ (v) =
∫

∇θπ(z | v; θ0)dz = 0.

9. In principle, asymptotic normality should also obtain without the first part of Assumption 9(b), although the
asymptotic variance should then depend on the limiting bandwidth value, λ̄. In our context, the first part of Assumption
9(b) is needed to address the efficiency issues we deal with in Section 3.3.

10. Indeed, by replacing the distance and weighting functions for marginal densities D(π(y; θ),πT (y)) =
[(π(y; θ)/πT (y))2 − 1] and wT (y) = πT (y) into the criterion MT (θ) in (1), we obtain the Neyman’s χ2 for marginal
densities, which, as noted in footnote 2, is a special case of the Cressie–Read divergence measures.
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Therefore, equation (19) simplifies to,

−JT,S
√

T (θT,S − θ0) = 1

S

S∑
i=1

(I i
1T −I0

1T )+op(1), (26)

where, by the same heuristic arguments leading to equation (23),

I i
1T ≈ 1√

T

T∑
t=1+l

∇θ logπ(zi
t (θ0)|v i

t (θ0); θ0), i = 0,1, . . . , S,

and where [z0
t (θ0) v0

t (θ0)] ≡ [zt vt ], the sample data.
Next, replace the limiting weighting function (24) into the matrix J in Theorem 1, obtaining

J = J∗ ≡ E[|∇θ logπ(zt | vt ; θ0)|2]. Finally, suppose that all the components of yt are observ-
able, and let zt = yt and vt = yt−1, such that π(zt |vt ; θ0) = π(yt |yt−1; θ0). Since the model (7)
is first-order Markov, then, by a standard argument made in the appendices, ∇θ logπ(yt |yt−1; θ0)

is a martingale difference. In this case, (i) the terms T − 1
2 I i

1T are asymptotically equivalent to the
score function, and (ii) J∗ collapses to the Fisher’s information matrix. Therefore, the variance
of the CD-SNE (rescaled by (1 + S−1)) attains asymptotically the Cramer–Rao lower bound,
E[|∇θ logπ(y′|y; θ0)|2]−1.

The previous arguments are obviously heuristic. One critical issue is that the limiting weight-
ing function (24) can be unbounded at the tails of the joint density π2(z,v ; θ0) and, hence, does
not satisfy Assumption 4. To implement the CD-SNE in this case, we use a trimming procedure
similar to that which we used to cope with the denominator problems discussed earlier. Consider
the following weighting function:

wT (z,v) = π1T (v)2

π2T (z,v)
T2T (z,v), T2T (z,v) ≡ GαT (π2T (z,v)), (27)

where GαT (�) ≡ ∫ �
0 gαT (u)du, and the function gαT is as in Assumption 8, for some sequence

αT : αT → 0. Similarly as for the trimming function TT,S(v ; θ) in Assumption 8, the trim-
ming function T2T (z,v) converges pointwise in probability to one and satisfies T2T (z,v) = 0
on {(z,v) ∈ Rq∗ ×Rq−q∗

: π2T (z,v) < αT }. Thus, it trims small values of the denominator
π2T (z,v) and ensures that the weighting function in (27) is bounded. Under regularity condi-
tions, (27) converges uniformly to (24). Assumption 10 below collects the regularity conditions
on the asymptotic behaviour of the bandwidth sequence λT , the sequence δT in the trimming
function TT,S(v ; θ) in Assumption 8, and the sequence αT in the trimming function T2T (z,v).

Assumption 10. As T → ∞, αT → 0, δT → 0, and δT /αT → κ , where κ is a constant.
Moreover

(a) λT → λ̄, where 0 ≤ λ̄ < ∞, and T
1
2 λ

q
T α4

T → ∞.

(b) λT → 0, T
1
2 λ

q+1
T α4

T → ∞, and α−1
T λ

ψ
T → 0, where ψ ≡ min{q∗ +1, 1

5r}.

The condition that αT and δT go to 0 at the same rate can be relaxed, at the cost of making
the presentation more cumbersome (see Appendix B, Remarks on Assumption 10(a) and 10(b)).
Assumption 10(a) ensures that the objective function of the CD-SNE with weighting function
(27) converges uniformly in probability to a well-defined limit and is needed to show consis-
tency of the CD-SNE. Assumption 10(b), instead, contains regularity conditions needed to prove
asymptotic normality. The intuition about the “square-root-T” conditions in both parts of As-
sumption 10 is the same as that provided in Section 3.1, and relates to the need to obtain uniform
convergence results for kernel density and score estimates.
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We have:

Theorem 2 (Cramer–Rao lower bound). Let wT (z,v) be as in (27), and let Assumptions
1(a), 2–3, 5, 6, 8, 9(a), and 10(a) hold; then, the CD-SNE is (weakly) consistent. Moreover,
suppose that E[‖∇θ logπ(zt | vt ; θ0)‖ϑ ]1/ϑ < ∞, for some ϑ > 2, and that the n ×n matrix J∗ =∫∫ |∇θ logπ(z | v; θ0)|2π2(z,v ; θ0)dzdv is invertible. Then, under the additional Assumptions
1(b), 7, 9(b), and 10(b),

√
T (θT,S − θ0)

d→ N

(
0,

(
1+ 1

S

)
J −1∗ V∗J �−1∗

)
,

where V∗ = var[∇θ logπ(zt | vt ; θ0)]+∑∞
k=1{cov[∇θ logπ(zt | vt ; θ0),∇θ logπ(zt+k | vt+k ; θ0)]+

cov[∇θ logπ(zt+k | vt+k ; θ0),∇θ logπ(zt | vt ; θ0)]}. Finally, suppose that the state is fully ob-
servable, and let the CD-SNE match one-step ahead conditional densities, that is, (zt ,vt ) ≡
(yt , yt−1). Then, the CD-SNE attains the Cramer–Rao lower bound as S → ∞.

In words, our CD-SNE is asymptotically as efficient as the MLE, when the number of sim-
ulations is large and the weighting function is as in (27). In this case, the criterion the CD-SNE
minimizes, asymptotically, is (25), which is the conditional counterpart to the Neyman χ2.

3.4. Joint density SNE

The CD-SNE hinges on matching conditional density estimates. In this subsection, we present
an alternative estimator obtained by matching joint density estimates. This estimator is inspired
by Aït-Sahalia’s (1996) estimator in equation (3). Its distinctive feature is that the analytical
expression for the joint density of data is replaced with an average of the joint densities computed
from simulated data, as formalized by the following definition.

Definition 2. (J-SNE) For each fixed S, the Joint Density SNE (J-SNE) is the sequence
{θT,S}T given by

θ J
T,S = argmin

θ∈�
LJ

T,S(θ)

≡ argmin
θ∈�

∫
[π2T,S(x ; θ)−π2T (x)]2wT (x)dx, (28)

where π2T,S(x ; θ) ≡ S−1∑S
i=1 π i

2T (x ; θ) and {wT (x)}T is a sequence of positive weighting func-
tions satisfying Assumption 4.

Let us define LJ(θ, λ̄) ≡ ∫
[π∗

2 (x ; θ, λ̄)−π∗
2 (x ; θ0, λ̄)]2w(x)dx , where π∗

2 (x ; θ, λ̄) is as in
(14) and, as usual, λ̄ denotes the limiting bandwidth, that is, λ̄ : λT → λ̄. To prove consistency of
the J-SNE, we need two sets of conditions paralleling those in Assumptions 5 and 6:

Assumption 11. For all θ ∈ �, LJ
T,S(θ) is measurable and continuous on �. Moreover,

LJ(θ, λ̄) is continuous on �, and there exists a unique θ0 in the interior of � such that LJ(θ, λ̄) =
0 implies that θ = θ0.

Assumption 12. There exists an α > 0 and a sequence {κT,S}T bounded in probability
as T becomes large such that for all (ϕ,θ) ∈ � × � and some α > 0, |LJ

T,S(ϕ) − LJ
T,S(θ)| ≤

κT,S‖ϕ − θ‖α .
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We have:

Theorem 3. Let Assumptions 1(a), 2–3, 4(a), and 11–12 hold; then, the J-SNE is (weakly)
consistent. Furthermore, let �(x) ≡ ∇θπ2(x ; θ0)w(x), suppose that E[‖�(xt )‖ϑ ]1/ϑ < ∞, for
some ϑ > 2, and that the n × n matrix D = ∫ |∇θπ2(x ; θ0)|2w(x)dx is invertible. Then, under

the additional Assumptions 1(b), 4(b), and 7, and the conditions that λT → 0 and T
1
2 λ

q+1
T → ∞

as T → ∞,

√
T (θ J

T,S − θ0)
d→ N

(
0,

(
1+ 1

S

)
D−1WD�−1

)
,

where W ≡ var[�(xt )]+∑∞
k=1{cov[�(xt ),�(xt+k)]+ cov[�(xt+k),�(xt )]}.

A few remarks are warranted. First, the J-SNE allows one to estimate multivariate models
driven by partially observed variables with unknown distribution by matching joint densities of
observed data.

Second, and up to identifiability, bandwidth choice does not affect consistency of the J-
SNE. This property parallels a similar property of the CD-SNE. It originates from the “twin-
smoothing” device, by which we now smooth joint densities (on simulated data and on sample
data) with the same kernel and bandwidth.

Third, the J-SNE is based on matching joint densities and, hence, does not lead to the de-
nominator problems discussed in Sections 2.2 and 3. Thus, the J-SNE is not affected by any of
the trimming issues underlying Assumptions 9 and 10. Note, also, that the order of the kernel
plays no role within the asymptotic theory for the J-SNE. In the case of the CD-SNE, the order
of the kernel plays a role, notably through Assumptions 9(b) and 10(b). Moreover, in the con-
text of partially observed systems, there is no clear ranking between the asymptotic variances of
Theorems 1–3. For all these reasons, the J-SNE is a reasonable alternative to the CD-SNE in the
presence of partially observed systems.

Finally, the (unscaled) variance D−1WD�−1 of Theorem 3 collapses to the variance of Aït-
Sahalia’s (1996) estimator in the scalar case and when wT (x) = π2T (x). The J-SNE, however, is
different from Aït-Sahalia’s, as it relies on a “twin-smoothing” device, as we explained earlier.
Finally, to show asymptotic normality, we need the square-root condition (T

1
2 λ

q+1
T → ∞), to en-

sure uniform convergence of the simulation-based kernel estimate ∇θπ2T,S(x ; θ0) to ∇θπ2(x ; θ0)
in the function �(x) of Theorem 3.

4. MONTE CARLO EXPERIMENTS

In this section we perform Monte Carlo experiments to investigate the finite sample proper-
ties of our estimators. We wish to address four points. First, we wish to ascertain whether the
finite sample properties of our estimators are accurately approximated by the asymptotic theory.
Second, we study how our simulated non-parametric estimators compare with alternative esti-
mators such as the Fermanian and Salanié (2004) NPSML estimator, and even the MLE. Third,
we examine how the CD-SNE and the J-SNE compare with each other. Fourth, we investigate
how bandwidth choice and the possible curse of dimensionality impart on our estimators’ finite
sample performance.

To address these points, we consider four distinct models: two discrete-time stochastic
volatility models (one univariate and one bivariate) (in Section 4.1), and two continuous-time
models commonly utilized in finance (namely, the standard Vasicek model and one extension of
the Vasicek model with stochastic volatility) (in Section 4.2).
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Our experiments on all these models share some common features. First, non-parametric
density estimates are implemented through Gaussian kernels. Second, our bandwidth choice
closely follows the suggestions made by Chen, Linton and Robinson (2001) in the context of
conditional density estimation with dependent data; precisely, for each Monte Carlo replication,
we select the bandwidth by searching over values minimizing the asymptotic mean integrated
squared error of the conditional density estimated on sample data. Third, we trim 2% of the
observations. Fourth, we set the number of path simulations equal to 5 in all experiments (i.e.
S = 5). Fifth, in cases in which our estimators can not be efficient, asymptotic standard devia-
tions are approximated through Newey–West windows of ±12. Finally, we run 1000 Monte Carlo
replications in each experiment.11

4.1. Discrete-time models

Discrete-time stochastic volatility models are very often utilized in financial applications. In this
section, we gauge the finite sample performance of our simulated non-parametric estimators
applied to the following stochastic volatility model,{

yt = σb exp(y∗
t /2)ε1t

y∗
t = φy∗

t−1 +σeε2t
(29)

where yt is the observable variable, y∗
t is the latent volatility process, ε1t and ε2t are two innova-

tions independent and identically distributed as standard normal and, finally, φ, σb and σe are the
parameters of interest. The interpretation of the observable variable yt is that of the unpredictable
part of some asset return. The important reason we focus on this model is that it has become a
workhorse in previous Monte Carlo studies—for example, Fermanian and Salanié (2004) tested
their NPSML estimator on this model.

We consider two estimators. The first estimator is the CD-SNE in (12), which we imple-
ment by matching the model’s conditional density to the conditional density πT (yt | yt−1) of two

adjacent observations, through the weighting function wT (yt , yt−1) = π1T (yt−1)
2

π2T (yt ,yt−1)
in (27). By

Theorem 2, the resulting estimator is not as efficient as the MLE, as the observable variable yt is
not first-order Markov—only the joint process (yt , y∗

t ) is first-order Markov. The second estima-
tor we consider is the J-SNE in (28), implemented by matching the joint density of two adjacent
observations, π2T (rt ,rt−1), and using the weighting function wT (yt , yt−1) = π2T (yt , yt−1).

The parametrization of the discrete-time model (29) is φ = 0·95, σb = 0·025 and σe = 0·260.
We consider a sample size of 500 observations. Table 1 reports the results of our Monte Carlo
experiments.12 We report the mean, median, and sample standard deviation of the estimates over
the Monte Carlo replications. As regards the CD-SNE and the J-SNE, Table 1 also reports: (i)
asymptotic standard deviations, obtained through the relevant theory developed in Section 3,
and (ii) coverage rates for 90% confidence intervals, computed through the usual asymptotic
approximation to the distribution of the estimator—that is, the estimate plus or minus 1·645
times the asymptotic standard deviation. Finally, Table 1 reports the finite sample properties of
three alternative estimation methods available in the literature, and summarized by Fermanian
and Salanié (2004, table 4).

11. In the most demanding applications (diffusion processes and sample sizes of 1000 observations), computation
time on a Pentium 4 with 1·7GHz is between 3 and 6 minutes. In the Monte Carlo experiments of this section, our
estimators are implemented with Fortran-90. The objective functions are optimized through a Quasi-Newton algorithm,
with a convergence criterion of the order of 10−5.

12. Initial values of the parameters are drawn from a uniform distribution on [0·15,0·35] (for σe); on [0·9,0·99]
(for φ); and on [0·015,0·035] (for σb). The correlation (over the Monte Carlo replications) between initial values and
final estimates are 0·11 (for the CD-SNE) and 0·09 (for the J-SNE) on average over the parameters.
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TABLE 1

Monte Carlo experiments (univariate discrete-time stochastic volatility model (29))

Estimator φ σb σe

CD-SNE Mean 0·909 0·024 0·229
Median 0·939 0·023 0·210
Sample S.D. 0·102 0·003 0·131
Asymptotic S.D. 0·115 0·004 0·089
Coverage rate 90% confidence interval 0·92 0·93 0·74

J-SNE Mean 0·942 0·027 0·297
Median 0·960 0·026 0·274
Sample S.D. 0·095 0·005 0·144
Asymptotic S.D. 0·121 0·005 0·093
Coverage rate 90% confidence interval 0·94 0·89 0·72

QML Mean 0·906 − 0·302
Sample S.D. 0·18 − 0·17

MCL Mean 0·930 − 0·233
Sample S.D. 0·10 − 0·07

NPSML Mean 0·913 0·022 0·318
Sample S.D. 0·10 0·003 0·17

Notes: True parameter values are: φ = 0·95, σb = 0·025 and σe = 0·260. Sample
size: T = 500. QML, quasi maximum likelihood; MCL, Monte Carlo maximum
likelihood; NPSML, non-parametric simulated maximum likelihood.

The results in Table 1 reveal that the CD-SNE and the J-SNE exhibit a proper finite sam-
ple behaviour, also in comparison with alternative estimation methods. In particular, the sample
variability of the estimates of φ and σb obtained with our methods is in line with its asymptotic
counterpart. As it turns out, it is relatively more difficult to estimate the volatility parameter σe

of the latent process y∗
t , which results in a sample standard deviation larger than its asymptotic

counterpart for both the CD-SNE and the J-SNE. Finally, note that since yt in (29) is not first-
order Markov, we do not expect, and do not find, a clear ranking between the two estimators, in
terms of the precision of the estimates.

Next, we explore how our methods are affected by the dimensionality of non-parametric
density estimates. We consider a simple model in which two (unpredictable parts of) asset returns
exhibit stochastic volatility. To isolate the effects of the curse of dimensionality and keep the
Monte Carlo design as simple as possible, we make the simplifying assumption that the two asset
return volatilities are driven by a common volatility factor,


y1t = σb1 exp(y∗

t /2)ε1t

y2t = σb2 exp(y∗
t /2)ε2t

y∗
t = φy∗

t−1 +σeε3t

(30)

where yit (i = 1,2) are the observable variables, y∗
t is the latent volatility process, ε1t , ε2t and

ε3t are three innovations independent and identically distributed as standard normal and, finally,
σbi (i = 1,2), φ and σe are the parameters of interest.

As in the previous experiments, we consider sample sizes of 500 observations, and para-
metrize model (30) as follows: φ = 0·95, σb1 = σb2 = 0·025 and σe = 0·260. We examine the
finite sample properties of both the CD-SNE and the J-SNE. The CD-SNE is implemented by
matching the conditional density of two adjacent pairs of observations, πT (y1t , y2t | y1t−1, y2t−1),
and using the weighting function (27). The J-SNE is implemented by matching the joint density of
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TABLE 2

Monte Carlo experiments (bivariate discrete-time stochastic volatility model (30)).

Estimator φ σb1 σb2 σe

CD-SNE Mean 0·916 0·025 0·026 0·289
Median 0·919 0·026 0·027 0·287
Sample S.D. 0·072 0·004 0·004 0·101
Asymptotic S.D. 0·080 0·004 0·004 0·113
Coverage rate 90% confidence interval 0·92 0·83 0·88 0·91

J-SNE Mean 0·913 0·027 0·027 0·365
Median 0·938 0·026 0·027 0·331
Sample S.D. 0·084 0·004 0·004 0·164
Asymptotic S.D. 0·085 0·005 0·005 0·154
Coverage rate 90% confidence interval 0·88 0·92 0·93 0·88

Notes: True parameter values are φ = 0·95, σb1 = 0·025, σb2 = 0·025, and σe = 0·260. Sample
size: T = 500.

two adjacent pairs of observations, π2T (y1t , y2t , y1t−1, y2t−1), and using the weighting function
π2T (y1t , y2t , y1t−1, y2t−1). The results are displayed in Table 2.13

The increase in dimensionality may produce two effects on the estimates. On the one hand,
the observation of two asset returns may facilitate our understanding of the dynamic properties
of the common unobserved volatility process. On the other hand, the larger dimension of the
non-parametric density estimates may impinge upon the precision of the estimates. The results in
Table 2 suggest that these effects arise in our experiments. Overall, an increase in dimensionality
does not seem to have jeopardized the performance of our estimators in this experiment.

4.2. Continuous-time models

All available simulation-based techniques (and the methods developed in this article) rest on
the obvious assumption that the model of interest can be simulated. However, continuous-time
models can not even be simulated, except in the trivial case in which the transition density is
known.14 Rather, continuous-time models can only be imperfectly simulated by means of some
discretization device. To deal with this complication goes well beyond the purpose of this illus-
trative section. In the unpublished appendix to this paper, we derive conditions under which our
theory works once the discretization shrinks to 0 at some rate (see Altissimo and Mele, 2008,
section E). Here, we provide the essential guidelines to estimate continuous time models with the
SNE. Consider the following data generating process,

dy(τ ) = b(y(τ ),θ0)dτ +a(y(τ ),θ0)dW (τ ), τ ≥ 0, (31)

where W (τ ) is a standard d-dimensional Brownian motion, b and a are vector and matrix valued
functions in Rd and Rd×d , a is full rank, y(τ ) ∈ Rd and, finally, θ0 ∈ �, where � is compact.
Similarly as in Section 2, we partition y(τ ) as y(τ ) ≡ [yo(τ ) yu(τ )], where yo(τ ) ∈ Rq∗

is the
vector of the observable variables. We assume that the data are sampled at regular intervals;
accordingly, we still let q ≡ q∗(1 + l) and xt ≡ (yo

t , · · · , yo
t−l) (t = 1 + l, · · · ,T ), where yo

t are

13. Initial values of the parameters are drawn as in the previous footnote. Correlations between initial guesses and
final estimates are also of the same order of magnitude as in the previous footnote.

14. To date, estimation methods specifically designed to deal with diffusion processes include moments generating
techniques (e.g. Hansen and Scheinkman, 1995; Singleton, 2001), approximations to maximum likelihood (e.g. Pedersen,
1995; Santa-Clara, 1995; Aït-Sahalia, 2002, 2003) and, on a radically different perspective, Markov Chain Monte Carlo
approaches (e.g. Elerian, Chib and Shephard, 2001).
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the discretely sampled data. Finally, we assume that (31) is strictly stationary and that {yo
t }T

t=1
satisfy the same regularity conditions in Section 3.

To generate simulated paths of the observable variables in (31), various discretization
schemes can be used (see, for example, Kloeden and Platen, 1999). In this paper, we consider the
simple Euler–Maruyama discrete time approximation to (31),

h yh(k+1) − h yhk = b(h yhk,θ)h +a(h yhk,θ)
√

hεk+1, k = 0,1, . . . , (32)

where h is the discretization step and εk is a sequence of independent and identically distributed
R

d -valued random variables. Let xi
t,h(θ) be the i-th simulation of the t-th observation when the

parameter vector is θ , and the discretization step is h. We compute joint and conditional density
estimates from the simulated data xi

t,h(θ) as we described in Section 2. The SNE now makes
density estimates computed from simulated data as close as possible to those computed from
the discretely sampled diffusion, according to the measures of distance in Definitions 1 and 2.
In Altissimo and Mele (2008, theorem E.1), we provide a rate condition on h (namely that as
T → ∞, h ↓ 0 in such a way that

√
T h → 0) and additional regularity conditions under which

our SNEs behave as in Theorems 1–3.
As for the experiments, we simulate the models through the Euler–Maruyama scheme in

(32), taking εk to be normally distributed, using a stepsize h = 1/(5 × 52), and sampling the
simulated data at a weekly frequency. We start by considering the celebrated Vasicek model of
the short-term interest rate,

di(τ ) = (b1 −b2i(τ ))dτ +a1dW (τ ), τ ≥ 0, (33)

where W (τ ) is a scalar Brownian motion, and b1, b2 and a1 are the parameters of interest. This
model is a useful benchmark because it is the continuous-time counterpart of a discrete-time
AR(1) model, and it can be easily estimated by maximum likelihood. The parametrization we
choose for this model is b1 = 3·00, b2 = 0·50, and a1 = 3·00. These parameter values imply that
the model-implied mean, variance and autocorrelations are roughly the same as the 3-month U.S.
interest rate in post-war data.

Let it be the discretely sampled data. We consider four estimators. First, we implement the
CD-SNE by matching the model’s conditional density to the conditional density πT (it | it−1)

of any two adjacent observations, and using π1T (it−1)
2

π2T (it ,it−1)
as a weighting function. By Theorem 2,

this estimator is asymptotically as efficient as the MLE. Second, we implement the J-SNE by
matching the joint density π2T (it , it−1) of two adjacent observations, and using π2T (it , it−1) as a
weighting function. Third, we consider an estimator we label Analytical-NE. The Analytical-NE
is a modification of the J-SNE in that the simulated non-parametric estimate π2T,S(it , it−1; θ)
in (28) is replaced with its analytical counterpart πvas

2 (it , it−1; θ).15 Thus, the objective function
of the Analytical-NE is:∫

[πvas
2 (it , it−1; θ)−π2T (it , it−1)]

2π2T (it , it−1)dit dit−1. (34)

Naturally, the Analytical-NE is unfeasible in most models of interest. We consider this es-
timator because it allows us to gauge the practical importance of the “twin-smoothing” device
underlying the SNE. The fourth estimator we consider is the MLE.

15. As is well known, the transition density πvas(is | it ; θ) from date t to date s (s > t) is Gaussian with expectation
equal to b1/b2 + [it − (b1/b2)]exp(−b2(s − t)) and variance equal to [a2

1/(2b2)][1 − exp(−2b2(s − t))]. The marginal
density is obtained by letting s → ∞.
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TABLE 3

Monte Carlo experiments (Vasicek model (33))

Sample Estimators b1 b2 a1
T = 1000 CD-SNE Mean 2·87 0·49 3·08

Median 2·89 0·47 3·10
Sample S.D. 0·97 0·17 0·29
Asymptotic S.D. 1·10 0·19 0·23
Coverage rate 90% confidence interval 0·95 0·92 0·82

CD-SNE – Double bandwidth Mean 2·65 0·43 3·23
Median 2·56 0·44 3·16
Sample S.D. 0·84 0·17 0·28

CD-SNE – Half bandwidth Mean 2·98 0·54 2·97
Median 2·93 0·56 3·04
Sample S.D. 1·06 0·23 0·40

J-SNE Mean 3·20 0·55 2·89
Median 3·07 0·52 2·76
Sample S.D. 1·11 0·25 0·41
Asymptotic S.D. 1·24 0·22 0·31
Coverage rate 90% confidence interval 0·95 0·85 0·81

Analytical-NE Mean 3·47 0·57 3·55
Median 3·20 0·47 3·46
Sample S.D. 2·09 0·64 0·62

MLE Mean 3·74 0·62 3·01
Median 3·93 0·63 2·99
Sample S.D. 1·21 0·20 0·07

T = 500 CD-SNE Mean 2·95 0·48 3·14
Median 2·95 0·48 3·12
Sample S.D. 1·03 0·24 0·42
Asymptotic S.D. 1·36 0·26 0·32
Coverage rate 90% confidence interval 0·94 0·94 0·83

J-SNE Mean 3·06 0·58 2·58
Median 3·03 0·51 2·51
Sample S.D. 1·41 0·35 0·71
Asymptotic S.D. 1·65 0·31 0·57
Coverage rate 90% confidence interval 0·97 0·84 0·76

MLE Mean 3·99 0·70 2·99
Median 4·01 0·69 3·00
Sample S.D. 1·36 0·27 0·10

Notes: True parameter values are b1 = 3·00, b2 = 0·50, and a1 = 3·00.

The performance of the four estimators is tested in samples of 1000 and 500 observations.
We report the results in Table 3.16 When the size of the simulated samples is 1000, the per-
formances of the CD-SNE and MLE are comparable in terms of variability of the estimates.
Specifically, the CD-SNE has a lower standard deviation than the MLE as regards the estima-
tion of the parameter b2 affecting the persistence of it . The MLE, however, is more precise than
the CD-SNE as regards the estimation of the volatility parameter a1. As it turns out, the sample
standard deviation of the CD-SNE estimates of a1 is larger than its asymptotic counterpart, and
this is reflected in a coverage rate below the nominal one. As regards biases, the MLE tends to
under-estimate the persistence of the data and largely over-estimate the constant b1 in the drift
term. This phenomenon does not emerge when the model is estimated with the CD-SNE.

16. Initial values of the parameters are drawn from a uniform distribution on [1·5,4·5] (for b1 and a1); and on
[0·1,0·9] (for b2). The correlations (over the Monte Carlo replications) between initial values and final estimates are 0·08
(for the CD-SNE) and 0·07 (for the J-SNE) on average over the parameters.
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As expected, the results in Table 3 clearly reveal that moving from the CD-SNE to the
J-SNE causes an increase in the variability of the estimates; this result is pronounced for the
volatility parameter a1. Furthermore, the Analytical-NE produces a much larger variability of
the estimates. Finally, the Analytical-NE produces parameters estimates with large biases: it
over-estimates the volatility coefficient a1 by 0·55 and the constant b1 in the drift term by 0·47.
These results are perfectly consistent with our theoretical explanations of biases arising when the
model density and the sample density are not smoothed with the same kernel.

As is well known, the practical performance of non-parametric methods hinges on the proper
choice of the bandwidth parameter. Table 3 also shows the effects of bandwidth selection on the
small samples performance of the CD-SNE. We have implemented two experiments. In the first
one, the CD-SNE is implemented with a bandwidth level, which is twice the size suggested by
Chen et al. (2001) (which we utilized earlier). In the second experiment, the bandwidth size is
half the size we utilized earlier. The results in Table 3 suggest that while these bandwidth choices
produce some effects on the estimates, those effects are marginal. In particular, we note that: (i)
under-smoothing the data increases somehow the variability of the density estimates, which in
turn leads to a higher standard deviation of the parameter estimates; and (ii) over-smoothing the
data tends to increase the mean bias of the parameter estimates.

Finally, Table 3 documents the performance of the CD-SNE, the J-SNE and the MLE in
shorter samples of 500 observations. As expected, the performance of all these methods worsens
as regards the variability of the estimates. As regards mean biases for the parameters b1 and b2,
we note that: (i) the mean bias of the MLE almost doubles with respect to the longer sample; and
(ii) the mean biases of the CD-SNE remain small, compared to the corresponding mean biases of
the MLE.

A simple extension of the model in (33) is one in which the instantaneous volatility of
the short-term rate i(τ ) is driven by an unobservable process σ(τ) with constant elasticity of
variance, {

di(τ ) = (b1 −b2i(τ ))dτ +a1σ(τ)dW1(τ )

dσ(τ) = b3(1−σ(τ))dτ +a2σ(τ)dW2(τ )
(35)

where W1(τ ) and W2(τ ) are two independent Brownian motions, and b3 and a2 are additional pa-
rameters related to the volatility dynamics. Naturally, the presence of the unobservable volatility
component in model (35) now makes the MLE an unfeasible estimation alternative.

To implement Monte Carlo experiments, we choose as parameter values b1 = 3·00, b2 = 0·5,
a1 = 3·00, b3 = 1·0 and a2 = 0·3. These parameter values are consistent with the estimates of
similar models on U.S. short-term interest rates data. We implement the CD-SNE by matching
the model’s conditional density to the conditional density πT (it | it−1) of any two adjacent obser-
vations, and using the weighting function (27). We implement the J-SNE by matching the joint
density π2T (it , it−1) of two adjacent observations, and using π2T (it , it−1) as a weighting func-
tion. The performance of both estimators is gauged in samples of 1000 and 500 observations. We
report the results in Table 4.17

As regards the larger simple size case and the CD-SNE, the standard deviation and the bias
associated with the parameters b1 and b2 of the observable variable i(τ ) are of the same order
of magnitude as in Table 3. The presence of the unobservable volatility component makes the
estimate of a1 more imprecise than the corresponding estimates in Table 3. As regards the bias
terms, the CD-SNE has a tendency to over-estimate the parameter b3; this phenomenon becomes
more pronounced in the smaller sample size.

17. Initial values of the parameters are drawn from a uniform distribution on [1·5,4·5] (for b1 and a1); on [0·1,0·9]
(for b2); on [0·5,1·5] (for b3); and on [0·1,0·5] (for a2). The correlation (over the Monte Carlo replications) between
initial values and final estimates are 0·11 (for the CD-SNE) and 0·12 (for the J-SNE) on average over the parameters.
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TABLE 4

Monte Carlo experiments (continuous-time stochastic volatility model (35))

Sample Estimator b1 b2 a1 b3 a2

T = 1000 CD-SNE Mean 3·03 0·48 3·05 1·11 0·34
Median 3·07 0·49 3·04 0·98 0·32
Sample S.D. 0·93 0·22 0·40 0·59 0·20
Asymptotic S.D. 1·17 0·22 0·32 0·45 0·16
Coverage rate 90% confidence interval 0·95 0·88 0·83 0·82 0·83

J-SNE Mean 2·91 0·48 2·97 1·10 0·38
Median 2·95 0·49 2·91 1·05 0·33
Sample S.D. 1·15 0·22 0·50 0·52 0·20
Asymptotic S.D. 1·20 0·23 0·31 0·50 0·18
Coverage rate 90% confidence interval 0·91 0·91 0·78 0·84 0·88

T = 500 CD-SNE Mean 2·94 0·49 3·12 1·30 0·34
Median 2·99 0·49 3·07 1·11 0·31
Sample S.D. 1·41 0·30 0·62 0·77 0·27
Asymptotic S.D. 1·69 0·31 0·44 0·63 0·22
Coverage rate 90% confidence interval 0·95 0·89 0·80 0·83 0·85

J-SNE Mean 2·96 0·46 2·92 1·29 0·33
Median 3·01 0·47 2·87 1·12 0·29
Sample S.D. 1·52 0·29 0·61 0·75 0·25
Asymptotic S.D. 1·75 0·32 0·43 0·70 0·25
Coverage rate 90% confidence interval 0·94 0·92 0·81 0·87 0·89

Notes: True parameter values are b1 = 3·00, b2 = 0·50, a1 = 3·00, b3 = 1·00, and a2 = 0·30.

In contrast with our previous results obtained with the Vasicek model (33), we do not ob-
serve a clear ranking of the properties of the CD-SNE and the J-SNE. This phenomenon is par-
ticularly clear when the two estimators are compared in terms of the variability of the estimates.
Intuitively, the unobservable volatility process σ(τ) destroys the Markov property of the short-
term interest rate i(τ ) in (33). Precisely, the joint process (i(τ ),σ (τ)) in (35) is Markov, but the
“marginal” process i(τ ) is not. Therefore, the conditions in Theorem 2 for asymptotic efficiency
of the CD-SNE are not met. As a result, the CD-SNE does not necessarily outperform the J-SNE,
which makes the J-SNE an interesting alternative to look at in practical applications such as those
considered in this section.

5. CONCLUSION

This paper has introduced new methods to estimate the parameters of partially observed dynamic
models. The building block of these methods is simple. It consists of simulating the model of
interest for the purpose of recovering the corresponding density function. Our estimators are
those that make conditional (or joint) densities on simulated data as close as possible to their
empirical counterparts. We made use of classical ideas in the statistical literature to build up
convenient measures of closeness for such densities. Our estimators are easy to implement and in
the special case of observable Markov systems, they can attain the same asymptotic efficiency as
the maximum likelihood estimator. Furthermore, Monte Carlo experiments reveal that their finite
sample performance is very satisfactory, even in comparison to maximum likelihood.

Using simulations to recover the model-implied density is not only convenient because
it allows to estimate densities unknown in closed-form. We demonstrated that such a “twin-
smoothing” procedure makes our methods improve upon alternative techniques matching closed-
form model-implied densities to data-implied densities. Consistent with the asymptotic theory,
finite sample results suggest that a careful choice of both the measures of closeness for density
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functions and the bandwidth functions can enhance the performance of the estimators, but mainly
in terms of their precision. Furthermore, the “twin-smoothing” device makes the estimators ac-
curate in terms of unbiasedness, even in cases of simple bandwidth selection procedures.

In the numerical experiments, we emphasized the kind of applications arising in financial
economics. But we also demonstrated that our approach is quite general, and can be used to
address related estimation problems. As an example, the typical Markov models arising in applied
macroeconomics can also be estimated with our methods. Extensions of our methods can be
made to allow estimation of models in which some of the endogenous variables are tied up by
general equilibrium or no-arbitrage conditions; see, for example, Singleton’s (2006) surveys on
these estimation problems, and Pastorello, Patilea and Renault (2003) for a “latent backfitting”
approach to the estimation of partially observed equilibrium models. In these cases, too, the
previous asymptotic efficiency and encouraging finite sample properties would make our methods
stand as a promising advance into the literature of simulation-based inference methods.

APPENDICES

An unpublished appendix (Altissimo and Mele, 2008; hereafter Al-M08) includes extensive de-
tails and all the proofs of the lemmas stated in these appendices.

To simplify the notation, we shall denote the probability limits in equations (14) and (15) of
the main text as follows:

m2(z,v ; θ) ≡ π∗
2 (z,v ; θ, λ̄), m1(z | v; θ) ≡ π∗

1 (v ; θ, λ̄), m(z | v; θ) ≡ π∗(z | v; θ, λ̄),

and set, in equation (15), LCD(θ) ≡ LCD(θ, λ̄).

APPENDIX A. PROOF OF THEOREM 1

A.1. Consistency

Let LCD
T,S(θ) be the criterion function in (12) in the main text. We have:

Proposition 1. Let Assumptions 1(a), 2, 3, 4(a), and 5 hold. Then ∀θ ∈ �, LCD
T,S(θ)

p→ LCD(θ) as T → ∞.

According to a well-known result (see Newey, 1991, thm. 2.1, p. 1162), the following conditions are equivalent:

(C1) limT →∞ P(supθ∈� |LCD
T,S(θ)− LCD(θ)| > ε) = 0, ε > 0.

(C2) ∀θ ∈ �, LCD
T,S(θ)

p→ LCD(θ), and LCD
T (θ) is stochastically equicontinuous.

By Newey and McFadden (1994, lemma 2.9, p. 2138), Assumption 6 guarantees that LCD
T,S(θ) is stochastically

equicontinuous, and so weak consistency follows from the equivalence of C1 and C2 above, Assumptions 5 and 6,
compactness of �, and a classical argument (e.g. White, 1994, theorem 3.4). So we are only left to prove Proposition 1.

We need the following preliminary result.

Lemma C1. Let Assumptions 1(a), 2, and 3 hold, and for given θ ∈ �, set BT ≡ {v ∈ Rq−q∗
: π1T (v) > δT and

π i
1T (v ; θ) > δT , i = 1, . . . , S}, where δT → 0 and T

1
2 λ

q
T δT → ∞. We have

(a) Let λT → λ̄, where 0 ≤ λ̄ < ∞. Then, sup
(z,v)∈Rq∗×BT

∣∣∣π2T (z,v)
π1T (v) −m(z | v; θ0)

∣∣∣ p→ 0; and for all θ ∈ �,

sup
(z,v)∈Rq∗×BT

∣∣∣∣π i
2T (z,v ;θ)

π i
1T (v ;θ)

−m(z | v; θ)

∣∣∣∣ p→ 0, i = 1, . . . , S.

(b) Let λT → 0 and δ−1
T λr

T → 0. Then, sup(z,v)∈BT

∣∣∣π2T (z,v)
π1T (v) −π(z | v; θ0)

∣∣∣ p→ 0; and for all θ ∈ �,

sup
(z,v)∈Rq∗×BT

∣∣∣∣π i
2T (z,v ;θ)

π i
1T (v ;θ)

−π(z | v; θ)

∣∣∣∣ p→ 0, i = 1, . . . , S.
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Remarks on the proof of Lemma C1. The basic intuition about the proof of Lemma C1 carries over the proofs of the
remaining lemmas in this appendix, which are provided in sections A.1 and A.2 of Al-M08. We now develop the basic
lines of the arguments, which also help understand the Lemma’s conditions on the trimming parameter δT . Consider the
first result in Part (b) of Lemma C1 (the intuition about Part (a) is entirely similar). For some ε > 0, let B1T (ε) ≡ {v ∈
R

q−q∗
: π1(v ; θ0) ≥ εδT } and B2T (ε) ≡ {v ∈ Rq−q∗

: π1T (v) > εδT }. Finally, let B̂T ≡ B̂T (ε) ≡ B1T (ε)∩B2T (ε).
We have,

sup
(z,v)∈Rq∗×B̂T

|πT (z | v)−π(z | v; θ0)| ≤ sup
(z,v)∈Rq∗×B̂T

[
1

π1T (v)
|π2T (z,v)−π2(z,v ; θ0)|

]

+ sup
(z,v)∈Rq∗×B̂T

[
π2(z,v ; θ0)

π1(v ; θ0)π1T (v)
|π1T (v)−π1(v ; θ0)|

]

≤ ε−1δ−1
T sup

(z,v)∈Rq∗×B̂T

[|π2T (z,v)−π2(z,v ; θ0)|]

+ c0ε−1δ−1
T sup

(z,v)∈Rq∗×B̂T

[|π1T (v)−π1(v ; θ0)|]

= Op(T − 1
2 λ

−q
T δ−1

T )+ Op(δ−1
T λr

T )

+ Op

(
T − 1

2 λ
−(q−q∗)
T δ−1

T

)
+ Op(δ−1

T λr
T ),

where c0 ≡ sup
(z,v)∈Rq∗×Rq−q∗ [π2(z,v ; θ0)/π1(v ; θ0)] ≡ sup

(z,v)∈Rq∗×Rq−q∗ π(z | v; θ0). The second line follows

by the identity a
b − ā

b̄
≡ 1

b (a − ā) − ā
bb̄

(b − b̄), which holds for any four strictly positive functions a,b, ā, and b̄; the

third line follows by the definition of the trimming set B̂T ; the fourth line holds as supx∈Rq |π2T (x) − π2(x ; θ0)| =
Op(T − 1

2 λ
−q
T )+ Op(λr

T ), by theorem 1 (p. 568) of Andrews (1995). Then, Part (b) of Lemma C1 holds true as it can be
shown that with probability approaching one as T → ∞, the trimming set B̂T is the same as B2T (1).

Remarks on the proof of Proposition 1. Before stating our proof of Proposition 1, it is useful to describe the main
ideas underlying this proof. Our concern is to show that the integrand of [LCD

T,S(θ)− LCD(θ)] is bounded by integrable
functions independent of the sample size T , and that it converges in probability pointwise to 0 as T goes to infinity. To
establish these facts, we shall rely on an inequality, which is a standard component of the consistency proof for methods
of moments estimators (see, for example, Duffie and Singleton, 1993, equation (A5), p. 949). Let MT and WT be two
sequences converging in probability to M0 and W0, respectively. (In our proof, MT and WT will be two estimated
functions.) Then, the following inequality holds true,

|M2
T WT − M2

0 W0| ≤ |M0||WT − W0||MT |+ |MT − M0|(WT |MT |+ W0|M0|). (A1)

We shall also use the inequality (A1) to establish consistency of the CD-SNE in Theorem 2 (Appendix B).

Proof of Proposition 1. We produce the arguments that apply to the case in which the bandwidth sequence λT
satisfies Assumption 9(a). Accordingly, we will make a repeated use of Lemma C1(a). The case of a bandwidth sequence
that satisfies Assumption 9(b) is dealt with similarly, by replacing Lemma C1(a) with Lemma C1(b). Below, we will
denote w̄(z,v) ≡ E[wT (z,v)].

We claim that

|LCD
T,S(θ)− LCD(θ)| ≤

∫∫
(a1T,S(z,v ; θ)+a2T,S(z,v ; θ))dzdv, (A2)

where

a1T,S(z,v ; θ) ≡ |πT,S(z | v; θ)−πT (z | v)|TT,S(v ; θ)|m(z | v; θ)−m(z | v; θ0)||wT (z,v)− w̄(z,v)|

a2T,S(z,v ; θ) ≡ |[πT,S(z | v; θ)TT,S(v ; θ)−m(z | v; θ)]− [πT (z | v)TT,S(v ; θ)−m(z | v; θ0)]|

× [φT,S(z,v ; θ)+φ(z,v ; θ)]

c© 2009 The Review of Economic Studies Limited



ALTISSIMO & MELE NON-PARAMETRIC ESTIMATION OF DYNAMIC MODELS 439

φT,S(z,v ; θ) ≡ |πT,S(z | v; θ)−πT (z | v)|TT,S(v ; θ)wT (z,v)

φ(z,v ; θ) ≡ |m(z | v; θ)−m(z | v; θ0)|w̄(z,v) (A3)

provided the R.H.S. of (A2) is finite. Indeed, (A2) follows by applying the inequality (A1) to the integrand of [LCD
T,S(θ)−

LCD(θ)], after setting MT ≡ [πT,S(z | v; θ)−πT (z | v)]TT,S(v ; θ), M0 ≡ [m(z | v; θ)− m(z | v; θ0)], WT = wT (z,v)

and W0 = w̄(z,v).

Next, we show that
∫∫

(a1T,S +a2T,S)
p→ 0 for all θ ∈ �. We study the two integrals separately.

– For all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�, a1T,S(z,v ; θ) ≤ �T (z,v ; θ)φ2T,S(z,v ; θ), where

�T (z,v ; θ) ≡ |m(z | v; θ)−m(z | v; θ0)||wT (z,v)− w̄(z,v)|

φ2T,S(z,v ; θ) ≡ 1

S

S∑
i=1

|π i
T (z | v; θ)−m(z | v; θ)|TT,S(v ; θ)+|πT (z | v)−m(z | v; θ0)|TT,S(v ; θ)

+|m(z | v; θ)−m(z | v; θ0)|TT,S(v ; θ). (A4)

By Assumptions 1(a), 3, and 4, we have that for each θ ∈ �, the function �T is bounded by integrable functions

independent of T . Moreover, by Assumption 4, for all θ ∈ �, �T (z,v ; θ)
p→ 0 (z,v) pointwise. Finally, by Lemma

C1(a),

sup
(z,v)∈Rq

|π i
T (z | v; θ)−m(z | v; θ)|TT,S(v ; θ)

p→ 0, i = 1, . . . , S.

This result clearly holds for the first S +1 terms of φ2T,S in (A4) as well. Finally, |m(z | v; θ)−m(z | v; θ0)| is
bounded. Therefore, for all θ ∈ �, ∫∫

a1T,S(z,v ; θ)dzdv
p→ 0. (A5)

– For all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

a2T,S(z,v ; θ) ≤ 1

S

S∑
i=1

|π i
T (z | v; θ)TT,S(v ; θ)−m(z | v; θ)|φ3T,S(z,v ; θ)

+|πT (z | v)TT,S(v ; θ)−m(z | v; θ0)|φ3T,S(z,v ; θ), (A6)

where φ3T,S(z,v ; θ) ≡ φ(z,v ; θ) + φT,S(z,v ; θ) ≤ φ(z,v ; θ) + φ2T,S(z,v ; θ)wT (z,v). For each i = 1, . . . , S,
and (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

|π i
T (z | v; θ)TT,S(v ; θ)−m(z | v; θ)|φ3T (z,v ; θ)

≤ m(z | v; θ)[1−TT,S(v ; θ)][φ(z,v ; θ)+φ2T,S(z,v ; θ)wT (z,v)]

+|π i
T (z | v; θ)−m(z | v; θ)|TT,S(v ; θ)[φ(z,v ; θ)+φ2T,S(z,v ; θ)wT (z,v)]

≡ a21T,S(z,v ; θ)+a22T,S(z,v ; θ),

where the inequality holds by the triangle inequality. Since wT , φ and m are bounded, and wT and φ are also

integrable,
∫∫

a22T,S(z,v ; θ)
p→ 0 for all θ ∈ � by Lemma C1(a). As for the a21T,S term, |1−TT,S(v ; θ)| ≤ 1.

Moreover, [1−TT,S(v ; θ)]
p→ 0 pointwise. Hence, by the previous results on φ2T,S and Lemma C1(a),

∫∫
a21T,S

(z,v ; θ)
p→ 0 for all θ ∈ �. By reiterating the previous arguments, one shows that the same result holds for the

second term in (A6) and, hence, for all θ ∈ �,∫∫
a2T,S(z,v ; θ)dzdv

p→ 0. (A7)

Hence, the proof of the proposition is complete, by equations (A2), (A5), and (A7).

c© 2009 The Review of Economic Studies Limited



440 REVIEW OF ECONOMIC STUDIES

A.2. Identifiability and bandwidth choice

We provide two examples of kernels and data-generating processes with both bounded and unbounded support for which
the identifiability condition in Assumption 5 holds.

Example 1. Let yt in (7) be independent and identically distributed as a Gaussian with unit variance and mean
parameter θ0 = 0. Let the kernel be uniform, as in the example of Section 3.1(see equation (16)), that is, K (y) = 1

2 I|y|≤1,
where I is the indicator function. In this case, the asymptotic criterion of the CD-SNE is given by

L(θ, λ̄) ≡
∫
R

[π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄)]2w(y)dy, (A8)

where,

π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄) = 1

2λ̄

1√
2π

y+λ̄∫
y−λ̄

(
e− 1

2 (ξ−θ)2 − e− 1
2 (ξ−θ0)2

)
dξ, θ0 = 0,

and where we take w(y) = 1√
2π

e−(1/2)y2
. Identification occurs if L(θ, λ̄) = 0 
⇒ θ = θ0, or if

λ̄ : sup
y∈R

|π∗
1 (y; θ, λ̄)−π∗

1 (y; θ0, λ̄)| = 0. (A9)

Let the limiting bandwidth value λ̄ = 1
2 . Figure A1 below illustrates that L

(
θ, 1

2

)
= 0 only with θ = θ0. In other

terms, θ0 = 0 is the only parameter value for θ that makes π∗
1

(
y; θ, 1

2

)
−π∗

1

(
y; θ0, 1

2

)
= 0 for each y, which is what is

formally required by (A9).

Next, we develop one example in which data have bounded support, and identification occurs even when the limiting
bandwidth value λ̄ is non-zero.

Example 2. Let us assume that yt is independent and identically distributed, generated by a Beta distribution
with parameters θ,β, where β0 is known and equal to 2. Therefore, the support is Y = (0,1), and the marginal density
for yt is,

π1(y; θ) = �(θ +2)

�(θ)
yθ−1(1− y).

Let θ0 = 2. For all θ ∈ (1,∞),

�π∗
1 (y; θ, λ̄) ≡ π∗

1 (y; θ, λ̄)−π∗
1 (y; θ0, λ̄) = 1

λ̄

1∫
0

K

(
y − ξ

λ̄

)[
�(θ +2)

�(θ)
ξθ−1 −6ξ

]
(1− ξ)dξ.

FIGURE A1

Identifiability with Normal distributions and uniform kernels. This picture depicts the SNE asymptotic criterion L(θ, λ̄)
in equation (A8), evaluated at λ̄ = 1

2
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FIGURE A2

Identifiability with Beta distributions. The L.H.S. panel depicts the function π∗
1 (y; θ, λ̄) = λ̄−1 ∫ K

(
y−ξ

λ̄

)
π1(ξ ; θ)dξ

evaluated at the points yi = 0·10, 0·20, . . . , 0·90 and θ i = 1·70, 1·75,. . . , 2·30. The R.H.S. panel depicts the lines
θ �→ �π∗

1 (y; θ, λ̄) = π∗
1 (y; θ, λ̄) − �π∗

1 (y; θ0, λ̄) evaluated at the same points yi ,θ i . In both cases, π1(y; θ) =
�(θ+2)
�(θ) yθ−1(1− y), θ0 = 2, K is the Gaussian kernel and λ̄ = 1

Consider the kernel K (x) = 1√
2π

e−(1/2)x2
, and let λ̄ = 1. Figure A2 plots both π∗

1 (y; θ,1) and �π∗
1 (y; θ,1). Note,

now, that for all y, �π∗
1 (y; θ,1) = 0 
⇒ θ = θ0 = 2. Thus, in this example, the model and the limiting bandwidth λ̄ satisfy

an identification condition, which is even stronger than required by (A9), i.e. supy∈(0,1) |�π∗
1 (y; θ,1)| = 0 
⇒ θ = θ0.

A.3. Asymptotic normality

In Lemmas N1 through N3 below, BT is the same set introduced in Lemma C1, and δT is the same trimming sequence
introduced in Assumptions 8 and 9.

Lemma N1. Let Assumptions 1–3 hold, let x ≡ [z v], as in the main text, and let Assumption 7(b) hold. Then, for
all θ ∈ � and j = 1, . . . ,n,

(i) supx∈Rq

∣∣∣∇θ j π2T,S(x ; θ)−∇θ j π2(x ; θ)
∣∣∣= Op

(
T − 1

2 λ
−q−1
T

)
+ Op(λr

T ).

(ii) sup
(z,v)∈Rq∗×BT

∣∣∣∇θ j πT,S(z | v; θ)−∇θ j π(z | v; θ)
∣∣∣= Op

(
T − 1

2 λ
−q−1
T δ−2

T

)
+ Op

(
T − 1

2 λ
−(q−q∗)−1
T δ−2

T

)
+

Op

(
T − 1

2 λ
−(q−q∗)
T δ−3

T

)
+ Op(λr

T δ−3
T ).

Lemma N2. Let the assumptions in Lemma N1 and Assumption 7(b) hold. Then, for all j = 1, . . . ,n,

sup
(z,v)∈Rq∗×BT

∣∣∣∣∣
∇θ j πT,S(z | v; θ0)wT (z,v)

π1T (v)
−

∇θ j π(z | v; θ0)w(z,v)

π1(v ; θ0)

∣∣∣∣∣

= Op

(
T − 1

2 λ
−q−1
T δ−3

T

)
+ Op

(
T − 1

2 λ
−(q−q∗)−1
T δ−3

T

)
+ Op

(
T − 1

2 λ
−(q−q∗)
T δ−4

T

)
+ Op(λr

T δ−4
T ).

c© 2009 The Review of Economic Studies Limited



442 REVIEW OF ECONOMIC STUDIES

Lemma N3. Let the assumptions in Lemma N2 hold. Then, for all i = 1, . . . , S and j = 1, . . . ,n,

sup
(z,v)∈Rq∗×BT

∣∣∣∣∣
∇θ j πT,S(z | v; θ0)E(π2T (z,v))wT (z,v)

π i
1T (v ; θ0)π1T (v)

−
∇θ j π(z | v; θ0)π2(z,v ; θ0)w(z,v)

π1(v ; θ0)2

∣∣∣∣∣
= Op

(
T −(1/2)λ

−q−1
T δ−4

T

)
+ Op

(
T −(1/2)λ

−(q−q∗)−1
T δ−4

T

)
+ Op

(
T −(1/2)λ

−(q−q∗)
T δ−5

T

)
+ Op(λr

T δ−5
T ).

Remarks on Lemmas N1–N3

(a) Lemma N1 is needed to show that JT,S in equation (20) converges in probability to J , where J has been
defined in Theorem 1 (see, also, equation (A13) below). Lemmas N2 and N3 are needed to show that the
terms Ii

1T,S and Ii
2T,S in the first order conditions (A11)–(A12a)–(A12b) below converge in distribution to

the Gaussian terms provided in equations (A14a)–(A14b) below.
(b) The bandwidth conditions in Assumption 9(b) guarantee that the suprema in Lemmas N1–N3 go to 0 in prob-

ability, as shown in the next remarks.

Remarks on Assumption 9(b). It is easily seen that all the suprema in Lemmas N1–N3 go to 0 in probability under

the conditions that λT → 0 and T
1
2 λ

q+1
T δ4

T → ∞ in Assumption 9(b). The only nontrivial conditions that must be shown

to hold are that in Lemma N3, (i) λr
T δ−5

T → 0 and (ii) T 1/2λ
q−q∗
T δ5

T → ∞. But by the second part of Assumption 9(b),

(T
1
2 λ

q−q∗
T δ5

T )λ
q∗+1
T δ−1

T →∞. Hence, under the second part of Assumption 9(b), we have that T
1
2 λ

q−q∗
T δ5

T →∞ holds

if λ
q∗+1
T δ−1

T → 0. So we must simultaneously have λr
T δ−5

T → 0 and λ
q∗+1
T δ−1

T → 0, that is δ−1
T λ

min{q∗+1, 1
5 r}

T → 0.

Proof of asymptotic normality. By Assumption 7(a), the order of derivation and integration in ∇θ LCD
T,S (θ) can be inter-

changed (see Newey and McFadden, 1994, lemma 3.6, pp. 2152–2153). Therefore, the CD-SNE satisfies the following
first order conditions:

0n = 1

S

S∑
i=1

∫∫ [
π i

2T (z,v ; θT,S)

π i
1T (v ; θT,S)

− π2T (z,v)

π1T (v)

]
∇θ πT,S(z | v; θT,S)wT (z,v)T2

T,S(v ; θT,S)dzdv

+
∫∫ [

πT,S(z | v; θT,S)−πT (z | v)
]2

wT (z,v)TT,S(v ; θT,S)∇θTT,S(v ; θT,S)dzdv. (A10)

In Al-M08 (Section C.2), we demonstrate that the effects of the gradient ∇θTT,S(v ; θT,S) are asymptotically negli-
gible. Precisely, an expansion of the first order conditions in (A10) around θ0 leaves,

0n = 1

S

S∑
i=1

√
T
∫∫ [

π i
2T (z,v ; θ0)

π i
1T (v ; θ0)

− π2T (z,v)

π1T (v)

]
∇θ πT,S(z | v; θ0)wT (z,v)T2

T,S(v ; θ0)dzdv +op(1)

+
[∫∫ ∣∣∇θ πT,S(z | v; θ0)TT,S(v ; θ0)

∣∣
2 wT (z,v)dzdv +op(1)

]√
T (θT,S − θ0).

Lengthy computations in Al-M08 (Section C.2) then lead to:

0n = 1

S

S∑
i=1

(Ii
1T,S +Ii

2T,S)− (I0
1T,S +I0

2T,S)+ [JT,S +op(1)]
√

T (θT,S − θ0), (A11)

where, for i = 0,1, . . . , S,

Ii
1T,S ≡

∫∫ ∇θ πT,S(z | v; θ0)wT (z,v)

π i
1T (v ; θ0)

T
2
T,S(v ; θ0)d Ai

T (z,v) (A12a)

Ii
2T,S ≡

∫∫ ∇θ πT,S(z | v; θ0)E(π2T (z,v))wT (z,v)

π i
1T (v ; θ0)π1T (v)

T
2
T,S(v ; θ0)dzd Ai

T (v) (A12b)

and where Ai
T (z,v) and Ai

T (v) are as in the definitions (21) in the main text.
By Lemma N1, and extensive computations in Al-M08 (Section C.2),

JT,S ≡
∫∫ ∣∣∇θ πT,S(z | v; θ0)TT,S(v ; θ0)

∣∣
2 wT (z,v)dzdv

p→ J ≡
∫∫

|∇θ π(z | v; θ0)|2 w(z,v)dzdv. (A13)
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Next, let F2(x) = ∫ x
−∞ π2(u; θ0)du and, for all i = 0,1, . . . , S, Fi

2T (x) = ∫ x
−∞ π i

2T (u; θ0)du (x = [z v] ∈ Rq ),
where π0

2T (x ; θ0) ≡ π2T (x). Let G be a measurable V-C subgraph class of uniformly bounded functions (see, for ex-
ample, Arcones and Yu (1994, Definition 2.2 p. 51)). By Arcones and Yu (1994, corollary 2.1 pp. 59–60), for each
G ∈ G, and xt = [zt vt ], T −1/2∑T

t=1+l [G(xt )− EG] converges in law to a Gaussian process under Assumptions 2

and 3. Now λ
−q
T Kq ((xt − x)/λT ) ∈G(x ∈ Rq ). Therefore, under Assumptions 2 and 3, the terms Ai

T (x) ≡ Ai
T (z,v) =∫ z

−∞
∫ v
−∞ d Ai

T (s′,s) in the first definition of (21) in the main text,

Ai
T (x) ≡ √

T [Fi
2T (x)− E(Fi

2T (x))] ⇒ ω0
i (F2(x)), i = 0,1, . . . , S,

where ω0
i (F2(x)) are independent Gaussian processes with covariance kernel,

Cq (x, x ′) ≡ min{F2(x), F2(x ′)}[1− F2(x ′)]+
∞∑

k=1

[Fk
2 (x, x ′)+ Fk

2 (x ′, x)−2F2(x)F2(x ′)],

and Fk
2 (x, x ′) ≡ P(x0 ≤ x, xk ≤ x ′), for (x, x ′) ∈ Rq ×Rq .

Similarly, let F1(v) = ∫ v
−∞ π1(u; θ0)du and, for all i = 0,1, . . . , S, Fi

1T (v) = ∫ v
−∞ π i

1T (u; θ0)du (v ∈ Rq−q∗
),

where π0
1T (v ; θ0) ≡ π1T (v). Under Assumptions 2 and 3, the terms Ai

T (v) = ∫ v
−∞ d Ai

T (s) in the second definition of
(21) in the main text,

Ai
T (v) ≡ √

T [Fi
1T (v)− E(Fi

1T (v))] ⇒ ω̂0
i (F1(v)), i = 0,1, . . . , S,

where ω̂0
i (F1(v)) are independent Gaussian processes with covariance kernel Cq−q∗ (v,v ′), (v,v ′) ∈ Rq−q∗ ×Rq−q∗

.
Hence, by Lemmas N2 and N3 and computations in Al-M08 (Section C.2), the terms Ii

1T,S and Ii
2T,S in (A12a)–(A12b)

satisfy

Ii
1T,S

d→ Ii
1 ≡

∫∫
η(z,v)dω0

i (F2(z,v)) (A14a)

Ii
2T,S

d→ Ii
2 ≡

∫
γ (v)dω̂0

i (F1(v)) (A14b)

where η(z,v) and γ (v) are as in the main text (see equations (22)), and are reported for convenience below:

η(z,v) = ∇θ π(z | v; θ0)w(z,v)

π1(v ; θ0)
; γ (v) =

∫ ∇θ π(z | v; θ0)π2(z,v ; θ0)w(z,v)

π1(v ; θ0)2
dz. (A15)

The terms Ii
1, i = 0,1, . . . , S, are all independent and asymptotically centered Gaussian. Therefore, by equation

(A11), equation (A13), and by the Slutzky’s theorem,
√

T (θT,S −θ0) is asymptotically centred normally distributed with
variance,

VS ≡ J−1var


 1

S

S∑
i=1

(Ii
1 +Ii

2)− (I0
1 +I0

2 )


J�−1 = J−1

(
1+ 1

S

)
var(I0

1 +I0
2 )J�−1,

where the variance terms var(I0
1 +I0

2 ) reported in Theorem 1 are finite by the mixing condition in Assumption 2 and
the assumption that E[‖ϒ(zt ,vt )‖ϑ ]1/ϑ < ∞, for some ϑ > 2 (by, for example, Politis and Romano, 1994, thm. 2.3,
p. 466), and follow by the same computations in Aït-Sahalia (1994) (proof of thm. 1, pp. 21–22) and Aït-Sahalia (1996)
(proof of equation (12), pp. 420–421).

APPENDIX B. PROOF OF THEOREM 2

B.1. Consistency

Similarly as in Appendix A.1, we produce the arguments that apply to the case in which the bandwidth sequence satisfies
Assumption 10(a). Accordingly, we will make a repeated use of Lemmas C1(a), C2(a), and C3(a). The case of a band-
width sequence that satisfies Assumption 10(b) (which is used to prove asymptotic normality in Appendix B.2 below) is
dealt with similarly, by replacing Lemma C�(a) with Lemma C�(b), � = 1,2,3.

We begin with two preliminary results.
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Lemma C2. Let Assumptions 1(a), 2, and 3 hold, and setAT ≡ {(z,v) ∈ Rq∗ ×Rq−q∗
: π2T (z,v) > αT }, where

αT → 0, T
1
2 λ

q
T α3

T → ∞ and λ
q∗
T αT → 0. We have

(a) Let λT → λ̄, where 0 ≤ λ̄ < ∞; then,

sup
(z,v)∈AT

[
1

m2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣
]

p→ 0.

(b) Let λT → 0 and α3
T λ−r

T → ∞; then,

sup
(z,v)∈AT

[
1

π2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− π2(v ; θ0)

π(z | v; θ0)

∣∣∣∣
]

p→ 0.

In the next lemma, BT is the same set introduced in Lemma C1, and δT is the same trimming sequence introduced
in Assumptions 8 and 10. Moreover,AT and αT in the lemma below are as in Lemma C2.

Lemma C3. Let Assumptions 1(a), 2, and 3 hold, and let αT → 0, δT → 0, T
1
2 λ

q
T α2

T δT → ∞ and

T
1
2 λ

q−q∗
T α2

T δ2
T → ∞. We have

(a) Let λT → λ̄, where 0 ≤ λ̄ < ∞; for each i = 1, . . . , S, and θ ∈ �,

sup
(z,v)∈AT ∩BT

[
1

m2(z,v ; θ0)m(z | v; θ0)

∣∣∣∣∣π
i
2T (z,v ; θ)

π i
1T (v ; θ)

−m(z | v; θ)

∣∣∣∣∣
]

p→ 0.

(b) Let λT → 0, α2
T δT λ−r

T → ∞ and α2
T δ2

T λ−r
T → ∞; then, for each i = 1, . . . , S, and θ ∈ �,

sup
(z,v)∈AT ∩BT

[
1

m2(z,v ; θ0)m(z | v; θ0)

∣∣∣∣∣π
i
2T (z,v ; θ)

π i
1T (v ; θ)

−π(z | v; θ)

∣∣∣∣∣
]

p→ 0.

Remarks on Assumption 10(a). It is easily seen that the bandwidth conditions in Lemmas C2(a) and C3(a) hold if

αT → 0, δT → 0, T
1
2 λ

q
T α3

T → ∞ and T
1
2 λ

q
T α2

T δ2
T → ∞. In turn, these conditions are satisfied if, for some constant κ ,

δT /αT → κ , and T
1
2 λ

q
T α4

T → ∞, as required by Assumption 10(a).

We are ready to produce the consistency proof. By the remarks on the proof of Proposition 1 in Appendix A.1, and
equation (A2), we only have to show that for all θ ∈ �,∫∫

aiT,S(z,v ; θ)dzdv
p→ 0, i = 1,2, (B1)

where the terms aiT,S are defined as in Appendix A.1 (equations (A3)), but with weighting function wT (z,v) = [π1T (v)/

πT (z | v)]T2T (z,v) and w(z,v) = m1(v ; θ0)/m(z | v; θ0). We proceed as in Appendix A.1, and study these two integrals
separately.

– For all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

a1T,S(z,v ; θ)

≤ |πT,S(z | v; θ)−πT (z | v)||m(z | v; θ)−m(z | v; θ0)|
∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣TT,S(v ; θ)T2T (z,v)

+|πT,S(z|v; θ)−πT (z | v)|TT,S(v ; θ)|m(z | v; θ)−m(z | v; θ0)| m1(v ; θ0)

m(z | v; θ0)
[1−T2T (z,v)]

≤ �1T,S(z,v ; θ)�2T (z,v ; θ)m2(z,v ; θ0)|m(z | v; θ)−m(z | v; θ0)|

+�2T (z,v ; θ)[m(z | v; θ)−m(z | v; θ0)]2m2(z,v ; θ0)TT,S(v ; θ)

+�3T,S(z,v ; θ)|m(z | v; θ)−m(z | v; θ0)|m2(z,v ; θ0)m1(v ; θ0)[1−T2T (z,v)]

+ m1(v ; θ0)

m(z | v; θ0)
[m(z | v; θ)−m(z | v; θ0)]2

TT,S(v ; θ)[1−T2T (z,v)]

≡ a11T,S(z,v ; θ)+a12T,S(z,v ; θ)+a13T,S(z,v ; θ)+a14T,S(z,v ; θ),
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where

�1T,S(z,v ; θ) ≡

 1

S

S∑
i=1

|π i
T (z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|


TT,S(v ; θ)

�2T (z,v ; θ) ≡ 1

m2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣T2T (z,v)

�3T,S(z,v ; θ) ≡ �1T,S(z,v ; θ)

m2(z,v ; θ0)m(z | v; θ0)
.

We have that for all θ ∈ �: (i)
∫∫

a11T,S
p→ 0, by Lemma C1(a) in Appendix A.1, by Lemma C2, and by

boundedness and integrability of the function m2(z,v ; θ)|m(z | v; θ) − m(z | v; θ0)|; (ii)
∫∫

a12T,S
p→ 0, by

Lemma C2(a), and by boundedness and integrability of the function [m(z | v; θ) − m(z | v; θ0)]2m2(z,v ; θ);

(iii)
∫∫

a13T,S
p→ 0, by Lemmas C1(a), C2(a) and C3(a). As regards the

∫∫
a14T,S term, note that the function,

m(z | v; θ0)−1[m(z | v; θ)−m(z | v; θ0)]2m1(v ; θ0)

is the integrand of the asymptotic criterion LCD(θ) in (15), with w(z,v) = m1(v ; θ0)2/m2(z,v ; θ0), which is
bounded and integrable by the assumption that LCD(θ) is continuous and bounded on � (Assumption 5). More-

over, for all (z,v,θ) ∈Rq∗ ×Rq−q∗ ×�, we have that |TT,S(v ; θ)[1−T2T (z,v)]| ≤ 1, and [1−T2T (z,v)]
p→ 0

pointwise. Hence
∫∫

a14T,S
p→ 0 for all θ ∈ � and, hence, for all θ ∈ �,

∫∫
a1T,S(z,v ; θ)dzdv

p→ 0. (B2)

– For all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

a2T,S(z,v ; θ)

≤ [φT,S(z,v ; θ)+φ(z,v ; θ)][|πT,S(z | v; θ)−m(z | v; θ)|+ | πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

+ [φT,S(z,v ; θ)+φ(z,v ; θ)][m(z | v; θ)−m(z | v; θ0)][1−TT,S(v ; θ)]

≡ a21T,S(z,v ; θ)+a22T,S(z,v ; θ).

For all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

a21T,S(z,v ; θ)

≤ |πT,S(z | v; θ)−m(z | v; θ)|TT,S(v ; θ)
1

m2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣T2T (z,v)

×m2(z,v ; θ0)
[|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

+|πT (z | v)−m(z | v; θ0)|TT,S(v ; θ)
1

m2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣T2T (z,v)

×m2(z,v ; θ0)[|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

+|m(z | v; θ)−m(z | v; θ0)|TT,S(v ; θ)
1

m2(z,v ; θ0)

∣∣∣∣ π1T (v)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣T2T (z,v)

×m2(z,v ; θ0)[|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

+|m(z | v; θ)−m(z | v; θ0)|m1(v ; θ0)m2(z,v ; θ0)

× 1

m(z | v; θ0)m2(z,v ; θ0)
[|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

+|πT,S(z | v; θ)−πT (z | v)|TT,S(v ; θ)
m1(v ; θ0)

m(z | v; θ0)
T2T (z,v)

c© 2009 The Review of Economic Studies Limited



446 REVIEW OF ECONOMIC STUDIES

× [|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|]TT,S(v ; θ)

≡ a211T,S(z,v ; θ)+a212T,S(z,v ; θ)+a213T,S(z,v ; θ)+a214T,S(z,v ; θ)+a215T,S(z,v ; θ).

We have that for all θ ∈ �: (i)
∫∫ ∑

j=1,2,3 a21 jT,S
p→ 0 by Lemma C1(a)in Appendix A.1, by Lemma C2(a),

and by boundedness and integrability of m(z | v; θ) and m2(z,v ; θ); (ii)
∫∫

a214T,S
p→ 0 by Lemma C3(a) and

boundedness and integrability of m(z | v; θ) and m2(z,v ; θ); (iii)
∫∫

a215T,S
p→ 0 by Lemmas C1(a) and C3(a).

Therefore, for all θ ∈ �,
∫∫

a21T,S
p→ 0.

Next, for all (z,v,θ) ∈ Rq∗ ×Rq−q∗ ×�,

a22T,S(z,v ; θ) ≤
{

a∗
22T,S(z,v ; θ)m2(z,v ; θ0)+ [m(z | v; θ)−m(z | v; θ0)]2 m1(v ; θ0)

m(z | v; θ0)

}
[1−TT,S(v ; θ)],

where

a∗
22T,S(z,v ; θ)

≡ [|πT,S(z | v; θ)−m(z | v; θ)|+ |πT (z | v)−m(z | v; θ0)|+ |m(z | v; θ)−m(z | v; θ0)|]TT,S(v ; θ)

× 1

m2(z,v ; θ0)

∣∣∣∣π1T (v ; θ)

πT (z | v)
− m1(v ; θ0)

m(z | v; θ0)

∣∣∣∣T2T (z,v)|m(z | v; θ)−m(z | v; θ0)|

+ 1

m2(z,v ; θ0)m(z | v; θ0)
|πT,S(z | v; θ)−πT (z | v)|TT,S(v ; θ)m1(v ; θ0)

×|m(z | v; θ)−m(z | v; θ0)|T2T (z,v).

As in Appendix A.1, we have that for all θ ∈ �, 1−TT,S(v ; θ)
p→ 0 pointwise. Since for all (v,θ) ∈Rq−q∗ ×�,

1 − TT,S(v ; θ) ≤ 1, and the functions m2(z,v ; θ0) and m(z | v; θ0)−1[m(z | v; θ) − m(z | v; θ0)]2m1
(v ; θ0) are bounded and integrable (by the assumption that the asymptotic criterion LCD(θ) is continuous and

bounded on �), then,
∫∫

a22T,S
p→ 0 for all θ ∈ �. Hence, for all θ ∈ �,

∫∫
a2T,S(z,v ; θ)dzdv

p→ 0. (B3)

Hence, equation (B1) holds by equations (B2) and (B3).

B.2. Asymptotic normality

In the following two lemmas, BT is the same set introduced in Lemma C1, and δT is the same trimming sequence
introduced in Assumptions 8 and 10. Moreover,AT and δT in the lemma below are as in Lemma C2.

Lemma N4. Let the assumptions in Lemma N1 hold. Let v �→ ξ1T (v) (v ∈Rq−q∗
) be a sequence of real, bounded

functions satisfying sup
v∈Rq−q∗ |ξ1T (v)−ξ1(v)| = Op(T − 1

2 λ
−(q−q∗)
T )+ Op(λr

T ), for some bounded function ξ1. Then,
for all θ ∈ � and j = 1, . . . ,n,

sup
(z,v)∈AT ∩BT

∣∣∣∣∣
∇θ j πT,S(z | v; θ0)π1T (v)ξ1T (v)

π2T (z,v)
−

∇θ j π(z | v; θ0)ξ1(v)

π(z | v; θ0)

∣∣∣∣∣
= Op

(
T − 1

2 λ
−q−1
T α−1

T δ−2
T

)
+ Op

(
T − 1

2 λ
−(q−q∗)−1
T α−1

T δ−2
T

)
+ Op

(
T − 1

2 λ
−(q−q∗)
T α−1

T δ−3
T

)

+ Op

(
λr

T α−1
T δ−3

T

)
+ Op

(
T − 1

2 λ
−(q−q∗)
T α−1

T

)
+ Op

(
T − 1

2 λ
−q
T α−2

T

)
+ Op

(
λr

T α−2
T

)
.

Lemma N5. Let the assumptions in Lemma N1 hold, and let ξ1T (v) be the sequence of functions in Lemma N4.
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Then, for all i = 1, . . . , S, and j = 1, . . . ,n,

sup
(z,v)∈AT ∩BT

∣∣∣∣∣
∇θ j πT,S(z | v; θ0)E (π2T (z,v))ξ1T (v)π1T (v)

π i
1T (v; θ0)π2T (z,v)

−∇θ j π (z | v; θ0)ξ1 (v)

∣∣∣∣∣
= Op

(
T − 1

2 λ
−q−1
T α−1

T δ−3
T

)
+ Op

(
T − 1

2 λ
−q
T α−2

T δ−1
T

)
+ Op

(
T − 1

2 λ
−(q−q∗)
T α−1

T δ−4
T

)

+ Op

(
λr

T α−1
T δ−4

T

)
+ Op

(
λr

T α−2
T δ−1

T

)
+ Op

(
λr

T δ−1
T α−1

T

)
.

Remarks on Lemmas N4–N5.

(a) Lemma N4 is needed to show that the termJT,Sdefined in equation (B5a) below converges in probability to the
term J defined in equation (B6a) below. Lemma N5 is needed to show that the terms Ii

1T,S and Ii
2T,S defined

in equations (B5b) and (B5c) below converge in distribution to the Gaussian terms provided in equations (B6b)
and (B6c) below.

(b) The bandwidth conditions in Assumption 10(b) ensure that the suprema in Lemmas N4 and N5 go to 0 in
probability, as shown in the next remarks.

Remarks on Assumption 10(b). Below, we show that under Assumption 10(b), the conditions α3
T λ−r

T → ∞
(in Lemma C2(b)) and α2

T δT λ−r
T → ∞ and α2

T δ2
T λ−r

T → ∞ (in Lemma C3(b)) hold true. It is also easily seen that
all the suprema in Lemmas N4 and N5 go to 0 in probability under the conditions that λT → 0, αT → 0, δT → 0,
and,

(i) T
1
2 λ

q
T α3

T → ∞
(ii) T

1
2 λ

q
T α2

T δT → ∞
(iii) T

1
2 λ

q+1
T αT δ3

T → ∞
(iv) T

1
2 λ

q−q∗
T αT δ4

T → ∞
(v) λr

T α−3
T → 0

(vi) λr
T α−2

T δ−2
T → 0

(vii) λr
T α−1

T δ−4
T → 0

If αT → 0, δT → 0, and δT /αT → κ , as required by Assumption 10, the previous conditions can be simplified to,

(i) T
1
2 λ

q
T α4

T → ∞ (also required by Assumption 10(b)); (ii) T
1
2 λ

q−q∗
T α5

T → ∞, and (iii) λr
T α−5

T → 0. By the same
arguments produced in the Remarks on Assumption 10(a) in Appendix B.1, one has that (ii) and (iii) are satisfied if

α−1
T λ

min{q∗+1, 1
5 r}

T → 0, as required by Assumption 10(b). Clearly, these conditions also imply that α3
T λ−3

T → ∞ (in
Lemma C2(b)) and α2

T δT λ−r
T → ∞ (in Lemma C3(b)) (with δT /αT → κ), as we initially claimed.

Proof of asymptotic normality. The proof is only sketched as it relies on arguments similar to those we produced in Ap-
pendix A.3. The extensive details of the proof are in Al-M08 (section D.2). Let ξ(z,v) ≡ π2(z,v ; θ0)w(z,v)/ π1(v ; θ0)2,
and consider the definition of γ (v) in Appendix A.3 (see equation (A15)). By plugging ξ(z,v) into equation (A15) yields

γ (v) =
∫

∇θ π(z | v; θ0)ξ(z,v)dz. (B4)

Next, let

WT ≡
{

wT (z,v) : wT (z,v) = ξ1T (v)
π1T (v)2

π2T (z,v)
T2T (z,v)

}
,

where the function ξ1T satisfies the conditions in Lemma N4. We study the asymptotic behaviour of the CD-SNE for the
weighting functions wT ∈WT . For every wT ∈WT , the terms Ii

1T,S , Ii
2T,S and JT,S in equations (A13), (A14a), and
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(A14b) of Appendix A.3 become

JT,S =
∫∫ ∣∣∣∣∇θ πT,S(z | v; θ0)π1T (v)

π2T (z,v)
TT,S(v ; θ0)

√
T2T (z,v)

∣∣∣∣
2
ξ1T (v)π2T (z,v)dzdv (B5a)

Ii
1T,S =

∫∫ ∇θ πT,S(z | v; θ0)π1T (v)2

π i
1T (v ; θ0)π2T (z,v)

ξ1T (v)T2T (z,v)T2
T,S(v ; θ0)d Ai

T (z,v) (B5b)

Ii
2T,S =

∫∫ ∇θ πT,S(z | v; θ0)E(π2T (z,v))π1T (v)

π i
1T (v ; θ0)π2T (z,v)

ξ1T (v)T2T (z,v)T2
T,S(v ; θ0)dzd Ai

T (v). (B5c)

By Lemmas N4 and N5, the bandwidth conditions in Assumption 10(b), and lengthy computations in Al-M08
(section D.2),

JT,S
p→ J ≡

∫∫ ∣∣∣∣∇θ π(z | v; θ0)

π(z | v; θ0)

∣∣∣∣
2
ξ1(v)π2(z,v ; θ0)dzdv (B6a)

Ii
1T,S

d→ Ii
1 ≡

∫∫ ∇θ π(z | v; θ0)

π(z | v; θ0)
ξ1(v)dω0

i (F(z,v)), i = 0,1, . . . , S (B6b)

Ii
2T,S

d→ Ii
2 ≡

∫
γ (v)dω̂0

i (F1(v)), i = 0,1, . . . , S (B6c)

Moreover, for any wT ∈ WT , the limiting function in (B4) ξ(z,v) = ξ1(v) and, hence, γ (v) = ξ1(v)
∫ ∇θ π(z |

v; θ0)dz = 0, for all v ∈ Rq−q∗
, or Ii

2 ≡ 0, for i = 0,1, . . . , S. Therefore, the next result follows by the same arguments
in Appendix A.3, the assumption that E[‖∇θ logπ(zt |vt ; θ0)‖ϑ ]1/ϑ < ∞, for some ϑ > 2 (and boundedness of ξ1(v)),
and the mixing condition in Assumption 2:

Proposition 2. Under the Assumptions of Theorem 2, the CD-SNE with weighting functions wT ∈WT is consistent
and asymptotically normal with variance/covariance matrix

(
1+ 1

S

)var (�t )+
∞∑

k=1

[
cov

(
�t ,�t+k

)+ cov
(
�t+k ,�t

)] ,

where �t ≡ �(zt ,vt ) and,

�(z,v) ≡
[∫∫ ∣∣∣∣∇θ π(s′|s; θ0)

π(s′|s; θ0)

∣∣∣∣
2
ξ1(s)π2(s′,s; θ0)ds′ds

]−1 ∇θ π(z | v; θ0)

π(z | v; θ0)
ξ1(v).

Theorem 2 is a special case of Proposition 2 with ξ1(·) = ξ1T (·) ≡ 1 and (z,v) = (y2, y1). The efficiency claim
follows by the standard score martingale difference argument (see, for example, Wooldridge, 1994, lemma 5.2, p. 2677).

APPENDIX C. ASYMPTOTICS FOR THE ESTIMATOR IN SECTION 2.3

In Al-M08 (section C.3), we show that the estimator θ̂T,S in (13) is weakly consistent and asymptotically normal
with variance/covariance matrix equal to, (

1+ 1

S

)
Ĵ−1V̂ Ĵ�−1,

where

Ĵ =
l∑

k=1

∫
R2q∗ |∇θ π(yo|yo−k ; θ0)|2w(yo, yo−k )dyodyo−k ,

V̂ = var(ϒ̂(yo
t , · · · , yo

t−l ))

+
∞∑

k=1

[cov(ϒ̂(yo
t , · · · , yo

t−l ), ϒ̂(yo
t+k , · · · , yo

t+k−l ))+ cov(ϒ̂(yo
t+k , · · · , yo

t+k−l ), ϒ̂(yo
t , · · · , yo

t−l ))],
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and

ϒ̂(yo
t , · · · , yo

t−l ) =
l∑

k=1

[η(yo
t , yo

t−k )+γ (yo
t−k )],

where η(·) and γ (·) are as in (22), with yo
t and yo

t−k replacing zt and vt .

APPENDIX D. PROOF OF THEOREM 3

The proof of Theorem 3 proceeds along similar lines as those in the proof of Theorems 1 and 2, and is provided in
Al-M08 (section B).
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